Литмир - Электронная Библиотека
Содержание  
A
A

Сернистый цинк, особенно при добавке серебра, меди или марганца, светится под влиянием приложенного переменного электрического поля. Это явление используется для создания больших светящихся поверхностей, для сигнализации, в целях рекламы и т. п.

Явления катодо- и электролюминесценции находят широкое применение в технике. Электронный луч в кинескопах — электронно-лучевых трубках телевизоров скользит по экрану, покрытому люминофором, перемещаясь по горизонтали и вертикали под влиянием магнитных и электрических полей (рис. 15), давая изображение.

Сходную физическую природу имеет свечение, возникающее под влиянием процессов радиоактивного распада и рентгеновского излучения (радиолюминесценция). Возникающие при распаде ядер частицы (протоны, а-частицы, электроны и др.) непосредственно ведут к возбуждению и ионизации атомов некоторых веществ. Свечение вызывают также выбитые ими и рентгеновскими квантами электроны. Каждая ионизирующая частица вызывает самостоятельную вспышку света. Поэтому специальными кристаллами, светящимися под влиянием таких частиц, пользуются для измерения количества распадов, дозы излучения. Счетчики излучения с такими кристаллами называются сцинтилляционными (от латинского слова сцинтилла — искра, вспышка). Рентгеновские люминесцирующие экраны делают видимым невидимое изображение, создаваемое рентгеновскими лучами, прошедшими через тело больного, позволяют сразу видеть больной орган. Одновременно они защищают врача от облучения.

Светящиеся составы, содержащие в качестве источников радиолюминесценции ничтожное количество радия или тория, используют для изготовления светящихся циферблатов часов. Благодаря длительности процесса распада радия подобное свечение сохраняется без изменений сотни лет.

Солнечный луч - doc2fb_image_03000015.png

Рис. 15. Развертка изображения кинескопа
а — горизонтальная; б — вертикальная; в — растровая

Свечение, возникающее при трении некоторых веществ, например при раскалывании кусков рафинада,— триболюминесценция — и при раздавливании некоторых кристаллов — кристаллолюминесценция — является результатом возникновения статических электрических полей на трущихся поверхностях или в местах разлома. При разряде статического электричества возникает ультрафиолетовое излучение, которое и есть непосредственная причина люминесценции.

Источником энергии для свечения могут служить разнообразные химические реакции, главным образом реакции окисления. Примерами такого свечения — хемилюминесценции — являются окисление фосфора (изделия из фосфорита длительное время светятся и в темноте), свечение гнилых пней.

Наибольший интерес для нас, конечно, представляет свечение живых организмов — биолюминесценция. Это явление широко распространено среди различных форм живого: есть светящиеся бактерии, жуки-светляки, ракообразные, моллюски, многощетинковые, морские черви, грибы, простейшие, рыбы.

Всего насчитывается 245 светящихся видов животных, в том числе 20 видов простейших, 51 — кишечнополостных, 47 — моллюсков, 19 — кольчатых червей, 40 — членистоногих, 60 — хордовых. Таким образом, светящиеся виды встречаются на всех уровнях организации животного мира, от одноклеточных до рыб. Свечение животные используют для отыскания особей другого пола. Жуки-светляки, приближаясь, сигнализируют на расстоянии в сотни метров вспышками с ритмом в 1 минуту.

Морские черви, обитающие у Багамских островов, всплывают для размножения после заката Солнца, но до восхода полной Луны, и отыскивают друг друга по свечению. Эти огоньки были приняты Колумбом в октябре 1492 г. за огни на берегу. Вспышки живого света— отличное средство защиты, отпугивания врагов. От света уползают даже змеи. И индейцы, привязывая светляков к пальцам ног, успешно используют это свойство живого света. Наконец, освещение весьма полезно при отыскании добычи. Однако у многих видов свечение, очевидно, никак не связано с физиологическими функциями.

Несмотря на различие светящихся организмов и веществ, участвующих в окислении, механизм свечения в большинстве случаев сходен. Восстановленное, богатое водородом органическое соединение — люциферин (от греческого слова «люцифер» — светоносный) — соединяется с кислородом при участии фермента люциферазы.

Люцифераза в 100 раз повышает скорость окисления люциферина и в 100 тыс. раз — выход люминесценции. Люциферин — производное бензотиазола, горючее процесса люминесценции, имеющее такую структуру:

Солнечный луч - doc2fb_image_03000016.png

Люцифераза же определяет суть, специфику процесса, делает его биологически значимым.

Однако у медуз свечение возникает без участия ферментов, при контакте особого белка экварина с ионами кальция. Нередко для возникновения живого свечения нужен еще один компонент, кроме люциферина, люцифе-разы и кислорода (свободного или связанного). Это АТФ (аденозинтрифосфат) — основное звено энергетики живого. Достаточно присутствия 10-9 г АТФ, чтобы в растворе люциферина — люциферазы возникла вспышка свечения. Такой «космический фонарик» может быть использован для обнаружения жизни на других планетах, ведь АТФ — непременная деталь механизма жизни в земном понимании. В процессе быстрого окисления молекулы люциферина приходят в возбужденное состояние и отдают избыточную энергию в виде света с длиной волны 4600—5600 А (сине-зеленая область спектра). Иногда излучение находится в желтой и даже в красной области спектра. Такое свечение — разновидность хемилюминесценции.

До сих пор мы рассматривали только живое свечение в видимой области спектра, да и то настолько интенсивное, что оно улавливается простым глазом. Но если снять оба этих ограничения, то оказывается, что все живые ткани, у всех живых существ, от медузы до человека, являются источником свечения. Оно настолько слабо, что обнаружить его удается только с помощью очень чувствительных электронных приборов. Советский ученый Ю. А. Владимиров дал этому свечению заслуженное название «сверхслабое».

Сверхслабые свечения обнаруживаются и в видимой, и в ультрафиолетовой, и в инфракрасной областях спектpa. Все они, по-видимому, возникают за счет энергии окисления органических соединений. Следовательно, это тоже разновидность хемилюминесценции.

Чтобы отличить сверхслабое свечение от люциферин-люциферазной реакции, его назвали биохемилюминесценцией. Более подробно она рассматривается в следующей главе. Но и по существу химического механизма, и по происхождению сверхслабые свечения и люциферин-люциферазная реакция — это разновидности биолюминесценции — свечения живых тканей.

О происхождении биолюминесценции современная наука выдвигает смелое предположение. В период зарождения жизни на Земле господствовали восстановительные условия. Кислород в атмосфере появился позже благодаря процессу фотосинтеза. Следовательно, первые живые организмы на Земле не только не нуждались в кислороде, они в нем не размножались. (И сейчас немало есть микроорганизмов, живущих в бескислородных условиях; присутствие кислорода в среде, где они живут, останавливает развитие и размножение таких микроорганизмов.)] С появлением зеленых растений в атмосфере начал накапливаться свободный кислород. Из организмов, приспособленных к бескислородным условиям существования, выживали те, которые вырабатывали какие-то способы удаления кислорода из своего тела. Связывание кислорода специально накопленными органическими соединениями, высвечивавшими затем свою избыточную энергию (явление биолюминесценции), способствовало выживанию организмов в новых условиях жизни. Таким образом, четвертая, а по времени возникновения и по универсальности распространения первая функция биолюминесценции — сброс избыточной энергии возбуждения и нейтрализация свободного кислорода. Свечение различных представителей животного мира — это своего рода рудиментарный признак, который лишь на более поздних этапах эволюции нашел новое применение.

31
{"b":"191016","o":1}