Литмир - Электронная Библиотека

И, несмотря на все это, мы все же в пути раз-другой проверяем, правильно ли мы летим. Если немного отклонились, проводим, как говорят, коррекцию траектории. Для этого ориентируем ракету носом в нужную сторону, включаем на несколько секунд двигатель. Он чуть толкнет ракету, подправит ее полет. И дальше она уже летит как надо.

К Луне подходить тоже непросто. Во-первых, надо лететь так, как будто мы намерены «промазать» мимо Луны. Во-вторых, лететь «кормой вперед». Как только ракета поравнялась с Луной, включаем ненадолго двигатель. Он притормаживает нас. Под действием притяжения Луны мы заворачиваем в ее сторону и начинаем ходить вокруг нее по круговой орбите. Здесь можно снова немного передохнуть. Затем приступаем к посадке. Снова ориентируем ракету «кормой вперед» и еще раз ненадолго включаем двигатель. Скорость уменьшается, и мы начинаем падать на Луну. Недалеко от поверхности Луны снова включаем двигатель. Он начинает сдерживать наше падение. Надо так рассчитать, чтобы двигатель полностью погасил скорость и остановил нас перед самой посадкой. Тогда мы мягко, без удара опустимся на Луну.

Возвращение с Луны уже идет знакомым порядком. Сперва взлетаем на круговую, окололунную орбиту. Потом увеличиваем скорость и переходим на вытянутую эллиптическую орбиту, по которой идем к Земле. Вот только посадка на Землю происходит не так, как посадка на Луну. Земля окружена атмосферой, и можно для торможения использовать сопротивление воздуха.

Однако отвесно врезаться в атмосферу нельзя. От слишком резкого торможения ракета вспыхнет, сгорит, развалится на куски. Поэтому мы нацеливаем ее так, чтобы она вошла в атмосферу «вкось». В этом случае она погружается в плотные слои атмосферы не так быстро. Скорость наша снижается плавно. На высоте нескольких километров раскрывается парашют — и мы дома. Вот сколько маневров требует полет к Луне.

Для экономии топлива конструкторы и здесь используют многоступенчатость. Например, наши ракеты, которые мягко садились на Луну и потом привозили оттуда образцы лунного грунта, имели пять ступеней. Три — для взлета с Земли и полета к Луне. Четвертую — для посадки на Луну. И пятую — для возвращения на Землю.

Все, что мы говорили до сих пор, была, так сказать, теория. Теперь совершим мысленно экскурсию на космодром. Посмотрим, как это все выглядит на практике.

Строят ракеты на заводах. Всюду, где возможно, используют самые легкие и самые прочные материалы. Для облегчения ракеты стараются все ее механизмы и всю аппаратуру, стоящую на ней, делать как можно более «портативными». Легче получится ракета — больше можно взять с собой топлива, увеличить полезную нагрузку.

На космодром ракету привозят по частям. В большом монтажно-испытательном корпусе ее собирают. Потом особый кран — установщик — в лежачем положении везет ракету, пустую, без топлива, на стартовую площадку. Там он поднимает ее и ставит в вертикальное положение. Со всех сторон ракету обхватывают четыре опоры стартовой системы, чтобы она не упала от порывов ветра. Потом подводят к ней фермы обслуживания с балконами, чтобы техники, готовящие ракету к старту, могли подобраться к любому ее месту. Подводят заправочную мачту со шлангами, через которые в ракету заливают топливо, и кабель-мачту с электрическими кабелями для проверки всех механизмов и приборов ракеты перед полетом.

Космические ракеты огромны. Самая первая наша космическая ракета «Восток» и то имела высоту 38 метров, с десятиэтажный дом. А самая большая американская шестиступенчатая ракета «Сатурн-5», которая доставляла американских космонавтов на Луну, имела высоту больше ста метров. Поперечник ее у основания 10 метров.

Когда все проверено и заливка топлива закончена, фермы обслуживания, заправочную мачту и кабель-мачту отводят.

И вот старт! По сигналу с командного пункта начинает работать автоматика. Она подает в камеры сгорания топливо. Включает зажигание. Топливо воспламеняется. Двигатели начинают быстро набирать мощность, все сильнее давят снизу на ракету. Когда наконец они набирают полную мощность и приподнимают ракету, опоры откидываются, освобождают ракету, и она с оглушительным ревом, как бы на огненном столбе, уходит в небо.

Управление полетом ракеты производится частично автоматически, частично по радио с Земли. А если ракета несет на себе космический корабль с космонавтами, то управлять могут и они сами.

Для связи с ракетой по всему земному шару размещены радиостанции. Ведь ракета ходит вокруг планеты, и может возникнуть необходимость связаться с ней как раз тогда, когда она будет «на той стороне Земли».

Ракетная техника, несмотря на свою молодость, показывает нам чудеса совершенства. Ракеты летали на Луну и возвращались обратно. Летали за сотни миллионов километров на Венеру и Марс, совершая там мягкие посадки. Пилотируемые космические корабли выполняли в космосе сложнейшие маневры. Сотни самых различных спутников выведены в космос ракетами.

Что будет дальше?

На путях, ведущих в космические дали, много трудностей.

Для путешествия человека, скажем, на Марс нам нужна была бы ракета совершенно невероятных, чудовищных размеров. Больше грандиозных океанских кораблей, весом в десятки тысяч тонн! О постройке такой ракеты нечего и думать.

На первое время, при полетах к ближайшим планетам, может помочь стыковка в космосе. Огромные космические корабли «дальнего плавания» можно строить разборными, из отдельных звеньев. С помощью сравнительно небольших ракет выводить эти звенья на одну и ту же «монтажную» орбиту около Земли и там состыковывать. Так можно в космосе собрать корабль, который будет даже крупнее ракет, по частям поднимавших его в космос. Технически это возможно даже сегодня.

Впрочем, стыковка облегчает завоевание космоса ненамного. Гораздо больше даст освоение новых ракетных двигателей. Тоже реактивных, но менее прожорливых, чем теперешние, жидкостные. Посещение планет нашей Солнечной системы резко двинется вперед после освоения двигателей электрических и атомных. Однако наступит время, когда станут необходимы полеты к другим звездам, в другие солнечные системы И тогда снова потребуется новая техника. Возможно, к тому времени ученые и инженеры сумеют построить фотонные ракеты. «Огненной струей» у них будет невероятно мощный луч света. При ничтожном расходе вещества такие ракеты смогут разгоняться до скоростей в сотни тысяч километров в секунду!

Космическая техника никогда не перестанет развиваться. Человек будет ставить перед собой все новые и новые цели. Для их достижения — придумывать все более совершенные ракеты. А создав их — ставить еще более величественные цели!

Многие из вас, ребята, наверняка, посвятят себя завоеванию космоса. Успехов вам на этом интереснейшем пути!

10
{"b":"190485","o":1}