Литмир - Электронная Библиотека
A
A

В привычном нам пространстве существует такое понятие, как расстояние. В СТО есть аналогичная величина, именуемая интервалом между событиями, обусловленным видимым течением времени. Чем быстрее движется объект, тем медленнее для наблюдателя, находящегося на этом объекте, течет время. Этот эффект назвали замедлением времени.

Если ваша скорость станет равной скорости света, время для вас остановится.

Одним из любопытных следствий из теории относительности является «парадокс близнецов», описанный Полем Ланжевином в 1911 году. Это, так сказать, классическая ее иллюстрация. Предположим, что Розенкранц и Гильденстерн родились в один и тот же день. Розенкранц – домосед, всю жизнь остающийся на Земле. Гильденстерн же путешествует со скоростью света и через год возвращается домой. Из-за замедления времени этот год превратится для Розенкранца в 40 лет. Получится, что Гильденстерн окажется моложе своего брата на 39 лет. Эксперименты с атомными часами, облетевшими вокруг Земли на реактивном самолете, вроде бы подтверждают подобный сценарий, однако по сравнению со скоростью света самолет движется слишком медленно, поэтому замеченная (и предсказанная) разница составила всего лишь доли секунды.

Пока все у нас идет отлично, однако гравитация сюда никак не вписывается. Несколько лет Эйнштейн ломал голову, пока не придумал, как это сделать: он допустил, что пространство‑время искривлено. Появившаяся в результате его трудов теория и стала общей теорией относительности, являющейся синтезом ньютоновской гравитации и СТО. По мнению Ньютона, гравитация – это сила, отклоняющая материальные частицы с идеально прямого пути, которым они иначе могли бы свободно следовать. Согласно же ОТО, гравитация – это никакая не сила, а искажение структуры пространства-времени. Принято говорить, что пространство‑время «искривляется», хотя этот термин зачастую вводит в заблуждение. В частности, это не означает, что пространство‑время искривляется вокруг чего-то еще. В физическом смысле искривление – это та же гравитация, под воздействием которой изгибаются световые лучи, и в результате появляются, к примеру, «гравитационные линзы». Иначе говоря, искривление света массивными объектами, которое Эйнштейн открыл в 1911 году и опубликовал свои результаты в 1915‑м. Впервые этот эффект был замечен во время солнечного затмения. Не так давно, наблюдая в телескоп за далекими квазарами, ученые обнаружили, что изображения некоторых из них мультиплицируются, так как их свет искривляется галактикой, находящейся на его пути.

Эйнштейновская теория гравитации вытеснила ньютоновскую потому, что лучше объясняла результаты некоторых наблюдений. Однако ньютоновская по-прежнему подходит для множества целей, к тому же она куда проще, поэтому списывать ее в утиль рановато. А теперь уже и эйнштейновскую теорию теснит другая, которую он когда-то отбросил, посчитав своей величайшей ошибкой.

В 1998 году два независимых наблюдения позволили усомниться в эйнштейновской концепции. Одно касалось крупномасштабной структуры Вселенной, другое имело место быть прямо у нас под боком. Первое наблюдение до сих пор изо всех сил сопротивляется любым попыткам его преодолеть, а вот второе любопытное явление, возможно, имеет какое-нибудь прозаическое объяснение. С него, пожалуй, и начнем.

В 1972 и 1973 годах для изучения Юпитера и Сатурна были запущены космические зонды «Пионер‑10» и «Пионер‑11». В конце 80‑х оба зонда находились в глубоком космосе, направляясь за пределы Солнечной системы. В научной среде с давних времен распространена была легенда, ничем, впрочем, не доказанная, что за Плутоном может находиться неоткрытая планета, Планета Х. Она должна была исказить траекторию движения зондов, поэтому все напряженно следили за их полетом в надежде заметить какие-нибудь отклонения. И действительно, команда Джона Андерсена обнаружила таковые. Все бы хорошо, однако не похоже было, что эти отклонения вызваны некой планетой. Более того, они не вписывались в общую теорию относительности. «Пионеры» двигались по инерции, без применения каких-либо двигателей, поэтому сила притяжения Солнца (и даже гораздо более слабая гравитация других объектов Солнечной системы) воздействовала на зонды, постепенно замедляя их движение. Однако они почему-то замедлились немного сильнее, чем ожидалось. В 1994 году Майкл Мартин предположил, что этого наблюдения вполне достаточно, чтобы поставить под сомнение постулаты Эйнштейна. К тому же в 1998 году та же команда Андерсена объявила, что наблюдаемые факты не могут быть объяснены ошибками измерения, газовыми облаками, давлением солнечного света или гравитационным воздействием отдаленных комет.

Трое других ученых немедленно предложили свои гипотезы, объясняющие аномалию. Первые двое грешили на перегрев. Аппаратура «Пионеров» работает от бортовых ядерных генераторов, излучающих в пространство небольшое количество избыточного тепла. Давление, обусловленное таким излучением, могло замедлить космические аппараты в наблюдаемых пределах величин. Другое предложенное объяснение состояло в небольшой утечке топлива зондов. Андерсен ревниво обдумал эти варианты и, разумеется, усомнился в обоих.

Самое интересное то, что наблюдаемое замедление замечательно точно вписывалось в нестандартную теорию, предложенную в 1983 году Мордехаем Милгромом. Он видоизменил не закон гравитации, а ньютоновский закон движения, согласно которому сила равна массе, помноженной на ускорение. Поправка Милгрома актуальна тогда, когда ускорение очень мало. Она была предложена для того, чтобы разрешить другую гравитационную головоломку, а именно тот факт, что скорость вращения галактик не вписывается ни в теорию Ньютона, ни в теорию Эйнштейна. Чаще всего это объясняют наличием «холодной темной материи», оказывающей гравитационное воздействие, но совершенно незаметной в телескопы. Если предположить, что галактики имеют своего рода гало из такой материи, то скорость их вращения не будет связана лишь с одной только видимой материей. Множеству физиков‑теоретиков идея темной материи не по душе («темная» в том смысле, что ее нельзя наблюдать непосредственно), и теория Милгрома начинает завоевывать популярность. Дальнейшее наблюдение за движением «Пионеров» покажет, кто был прав.

Другое открытие касается расширения Вселенной. Универсум становится все больше, но похоже, что в своих дальних пределах он расширяется быстрее, чем должен бы. Этот поразительный результат был позже подтвержден более детальными исследованиями проекта «Supernova Cosmology» под руководством Сола Перлмуттера и их конкурентами из проекта «High‑Z Supernova» – исследовательская группа под руководством Брайана Шмидта. Все это выглядит как небольшой изгиб на графике зависимости яркости видимого свечения далекой сверхновой от величины красного смещения. Тогда как согласно ОТО этот график должен представлять собой прямую. Между тем он ведет себя так, словно существует некая сила гравитационного отталкивания, проявляющаяся лишь на сверхдальних расстояниях, скажем, равных половине радиуса Вселенной. По сути, это форма антигравитации.

Недавние исследования, возможно, подтверждают это замечательное открытие. Впрочем, отдельные неуемные ученые тут же выдвинули альтернативные версии объяснения данного казуса. В 2001 году Чаба Чаки, Джон Тернинг и Неманья Калопер предложили совершенно новую теорию. Свет далеких сверхновых кажется нам менее ярким, чем он должен быть, потому что частицы света (фотоны) становятся чем‑то другим, а именно – «аксионами», гипотетическими частицами, предсказанными некоторыми новомодными течениями квантовой механики. Из-за того, что аксионы почти не взаимодействуют с остальной материей, обнаружить их очень нелегко. Но хотя масса аксиона должна быть чрезвычайно мала (примерно одна секстиллионная массы электрона), все же она больше нуля, и аксионы должны взаимодействовать с межгалактическими магнитными полями. Это взаимодействие превратит некоторую часть фотонов в аксионы, что и объясняет уменьшение яркости. Таким манером некоторые сверхновые могут терять до трети своих фотонов.

22
{"b":"189777","o":1}