II.6.2. Активные формы кислорода — главный яд старения
Существуют многочисленные свидетельства того, что повреждение митохондриальной ДНК специфически участвует в регуляторном каскаде, который обусловливает старение как дрожжей, так и животных.
Полвека назад Д. Хармэн в США и вслед за ним Н.М. Эммануэль в России развили мысль о том, что старение — результат повреждения биополимеров (в первую очередь ДНК) посредством АФК. С тех пор было
обнаружено множество свидетельств в пользу справедливости этого по- А стулата, причем создалось впечатление, что первичной мишенью АФК к при старении служит ДНК митохондрий. ш
Совсем недавно эго положение было прямо подтверждено в эле- tj: гантных опытах, выполненных в лабораториях Н.-Г. Ларшона, Т.А. т Проллы и Г. Зассенхауза. Исследователи обнаружили, что экспрсс- 2 сия мутантной митохондриальной ДНК-полимеразы, сохранившей £ способность синтезировать ДНК, но утратившей возможность корректировать свои ошибки при этом синтезе, ведет к сильному увеличению частоты мутаций митохондриальной ДНК, значительному сокращению продолжительности жизни и гораздо более раннему появлению многих типичных признаков старения. Группе Зассенхауза, модифицировавшей ДНК-полимеразу только в сердечной мышце, удалось предотвратить эффект этой модификации, введя «мута-торному» животному циклоспорин А, ингибитор пор во внутренней мембране митохондрий, которые открываются с помощью АФК и по существу губят митохондрии. Адресная доставка в митохондрии антиоксиданта SkQl или фермента каталазы, расщепляющей перекись водорода, резко замедляет старение «мутаторных» мышей (см. ниже, гл. II.7, разделы II.7.2, II.7.3).
Уже нет сомнений, что с возрастом баланс систем генерации и обезвреживания АФК сдвигается таким образом, что возрастает как количество АФК, так и степень повреждений, вызываемых АФК. Подобная ситуация приводит к тому, что постепенно увеличивается число клеток, ушедших в апоптоз, запускаемый АФК. Погибшие клетки не заменяются в полной мере новыми, и в результате при старении уменьшается общее число клеток в тех или иных органах и тканях. Эта мысль впервые была высказана великим физиком Л. Силардом, другом А. Эйнштейна.
По Силарду, именно уменьшение «клеточности» органов служит главной причиной снижения жизненных функций — основного признака старения организма. Главная беда старения не столько в том, что каждая наша клетка работает все хуже, сколько в том, что клеток этих становится все меньше и меньше. Типичный пример — старческая саркопения, т. е. уменьшение числа клеток (миофибрилл) в скелетных мышцах. Создается впечатление, что в результате действия программы старения скелет-
ных мышц организм вынужден требовать от этой ткани выполнения тех же функций, но при все уменьшающемся количестве миофибрилл. Так же, по-видимому, устроено старение и многих других наших тканей. Все это напоминает политику хитрого фабриканта, который заставляет свой завод выпускать прежний объем продукции, сокращая при этом количество рабочих. Чтобы справиться с задачей, у коллектива тружеников есть только одна возможность: придумать что-нибудь новенькое и увеличить производительность труда.
II.6.3. Как помирить геронтологов-оптимистов и пессимистов?
Все, что мы с годами узнаем о клеточном хозяйстве, с несомненностью убеждает нас в крайней степени «бюрократизации» ее управления. В клетке открыты длинные иерархии контролеров.
Если какой-то фермент (например, мышечная АТФ-аза актомиозин) выполняет механическую работу, то есть целая цепочка других белков- ^ ферментов, контролирующих этот процесс. Она состоит из собственно контролера №1, непосредственно взаимодействующего с актомиозином; t-контролера 2, контролирующего работу контролера №1; контролера № 3, т контролирующего контролера №2, и, наконец, контролера № 4, контр- о олируемого определенным гормоном — высшим командным устройст- о вом надклеточного уровня. Количество гормона в крови, в свою очередь, > контролируется цепочкой уже других контролеров. Вся эта громоздкая s система, действуя слаженно, повышает надежность работы клетки, в част- ct ности, уменьшает вероятность накопления ошибок в структурах ДНК о. и белков. Если все же такие ошибки возникают, то в ДНК они, как правило, исправляются специальными системами контроля и репарации. Что ^ касается поврежденных или сделанных с ошибками белков, то они узна- ^ ются и метятся особыми ферментами контроля качества этих полимеров. V
Ослабление контроля качества с возрастом могло бы сохранить организму многие клетки, которые в условиях более высокой жесткости этого контроля были бы уничтожены и усугубили бы уменьшение «клеточности». Побочным результатом такой стратегии стало бы накопление клеток со случайными ошибками в ДНК и белках в тканях стареющих организмов. Постепенное накопление ошибок действительно наблюдается при старении и служит главным аргументом «пессимистов» в их извечном противостоянии с «оптимистами». Как было недавно показано Т. Нистремом и сотрудниками, старение мушки дрозофилы сопровождается уменьшением активности протеасом — ключевого механизма контроля качества белков и увеличением содержания испорченных (карбонилированых или присоединивших оксиноне-наль) белков. Подобный эффект описан и у высших животных (млекопитающих), а также у человека in vivo и человеческих клеток в культуре. В определенных тканях животных показано уменьшение с возрастом концентрации полипептида убиквитина, а также ферментов, участвующих в присоединении убиквитина к белку-жертве. Кроме того, оказалось, что у старых животных появляются неактивные мутантные формы убиквитина, мешающие нормальным выполнять свою функцию контролера качества белков. Однако не будем забывать, что исходно уменьшение «клеточности», по всей вероятности, запрограммированно в геноме как завершающий этап онтогенеза. Так мы приходим к ситуации, когда старение, начавшись как результат работы соответствующей программы, постепенно становится процессом накопления случайных (стохастических) поломок биополимеров, которые остаются незамеченными ослабленными системами контроля качества. Однако вернемся к начальному этапу старения, который, как мы полагаем, есть результат постепенного отравления организма теми АФК, которые он образует.
II.6.4. Старение как результат запрограммированного окислительного стресса
Есть множество свидетельств тому, что АФК играют роль «самурайского меча» в самоубийстве биологических систем различной степени сложности. Такого рода явления обнаруживаются уже у бактерий, где механизмы типа «токсин-антитоксин» в определенных случаях опосредованно вызывают смерть клетки в результате резкого подъема уровня АФК под действием свободного токсина. У дрожжей гибельное действие избытка феромона в конечном итоге приводит к вспышке генерации ROS в митохондриях. Самоубийство митохондрий также может осуществляться за счет вызванного АФК открытия пор во внутренней мембране этих органелл. Апоптоз и некроз клеток многоклеточных организмов сопровождается подъемом уровня АФК и открытием тех же митохондриальных пор. Органоптоз (исчезновение органа в процессе онтогенеза) хвоста головастика вызывается мощной продукцией перекиси водорода в клетках этого органа. Повышение уровня АФК с возрастом описано у дрожжей, мицелиевых грибов, растений, насекомых, млекопитающих. Смертоносное действие абсцизовой кислоты, образуемой семенами однолетних растений (см. выше, гл. 2), также опосредовано, по-видимому, активными формами кислорода.
В только что вышедшем обзоре Б.Л. Кирквуд и А. Ковальд так суммируют аргументы в пользу тезиса о том, что старение причинно связано с токсическим эффектом АФК: 1) АФК непрерывно образуются при дыхании во всех аэробных клетках; 2) они способны вызывать окислительные повреждения практически всех органических веществ; 3) такое повреждение действительно имеет место в организме и увеличивается с возрастом; 4) мутации, уменьшающие повреждения, вызываемые АФК, увеличивают продолжительность жизни организма; 5) описаны случаи