Литмир - Электронная Библиотека
A
A

"Мы все знаем, каково это — быть влюбленными или, например, испытывать боль. Для передачи этой информации нам не нужны строгие определения, — рассуждает американский профессор математики, который после сочинения многочисленных специальных трудов взялся объяснить широкой публике, что такое топология. — Тем не менее математические объекты лежат вне обыденного опыта. Если человек не даст точного определения этих объектов, он не сможет правильно оперировать ими, не сможет говорить о них".

Это может быть так, а может и не быть. На самом деле большинство из нас устраивает небрежность таких понятий, как "длинный" и "короткий" в разговоре о расстоянии, "пологий" и "крутой", — когда речь идет о склоне. В отношении линий, кругов и сфер у нас есть интуитивное чувство, что появление в объекте отверстия иногда (но не всегда) способно изменить свойства объекта. Так, проколотый воздушный шар для нас вовсе не то же самое, что целый шар. Тем не менее пончик с джемом и без дырки представляет для нас фактически то же самое, что пончик с дыркой, с джемом или без. Это часть нашего общего опыта. Но в разобранном на составляющие мире математики использование неустойчивых понятий и неточных координат способно недопустимо исказить картину. В математике видимая схожесть объектов ничего не значит до тех пор, пока она не будет доказана. Ничто не известно, пока не имеет точного определения. Ничто — или почти ничто — не является само собой разумеющимся.

На заре математики Евклид говорил о вещах, которые казались сами собой разумеющимися. В своем главном труде, в "Началах", он привел пять постулатов, пять аксиом и 35 определений[3] — от определения точки ("то, что не имеет частей") до определения параллельных прямых (это прямые, "которые, будучи продолжены в обе стороны неограниченно, ни с той, ни с другой стороны между собой не встречаются"). Кроме того, Евклид объявляет (аксиома 1), что "равные одному и тому же равны и между собой".

Пять постулатов Евклида гласят:

1.От всякой точки до всякой точки можно провести прямую линию.

2.Ограниченную прямую можно непрерывно продолжать по прямой.

3.Из всякого центра всяким раствором может быть описан круг.

4.Все прямые углы равны между собой.

5.Если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, меньшие двух прямых, то эти прямые, продолженные неограниченно, встретятся с той стороны, где углы меньше двух прямых.

Строго говоря, даже в этих пяти утверждениях слишком многое принимается как данность. "Мне говорили, что Евклид все доказывал, и я был очень разочарован тем, что он начал с аксиом, — вспоминал Бертран Рассел о своем первом знакомстве с "Началами" в детстве. — Я отказывался принимать их на веру, пока брат не назовет мне вескую причину для этого. Он сказал, что если я этого не сделаю, мы не сможем двигаться дальше. Поскольку учиться я хотел, то скрепя сердце согласился".

Сначала первые четыре постулата Евклида принимались на веру им самим, его современниками и многими поколениями математиков. Они описывают пространство, которое мы можем не просто вообразить, но даже увидеть воочию. Их можно проверить эмпирически, нацарапав линию чем-нибудь острым, проведя окружность циркулем или натянув кусок веревки. Даже если длина сегмента окружности или ее радиус будут такими, что человеческий глаз не сможет их охватить, свойства их не изменятся. Это было очевидно и не нуждалось в доказательствах.

Пятый постулат Евклида — единственный, для которого требуется воображение: если две прямые не являются параллельными третьей, они когда-нибудь пересекутся. Верно и обратное: две прямые, параллельные третьей, никогда не пересекаются, какой бы длины они ни были. Этот постулат интерпретируют и так: в плоскости через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной. Это не так уж очевидно, да и проверить это нельзя. А раз это нельзя проверить, то нужно доказать. Столетиями математики трудились над этой задачей, но решить ее не сумели.

В XVIII веке были предприняты две попытки доказать пятый постулат Евклида от противного. Идея заключалась в выдвижении противоположного пятому постулату утверждения и доведении его до абсурда. Однако прямые линии вели себя не так, как от них ждали, и в результате математики получили воображаемую внутренне непротиворечивую картину, которая при этом противоречила пятому постулату. Оба математика сочли это нелепым и оставили свои попытки.

Около века спустя трое математиков (россиянин Николай Иванович Лобачевский, венгр Янош Бойяи и немец Иоганн Карл Фридрих Гаусс) пришли к выводу о возможности существования иной, неевклидовой геометрии, в которой соблюдаются четыре первых постулата, а пятый — нет. Но что значит — возможность существования? Она существует до тех пор, пока математики не найдут в ней просчеты или внутренние противоречия. Но можем ли мы воочию увидеть ее, как видим линию, сегмент или окружность? Невооруженным взглядом мы, как бы ни старались, увидим как раз евклидову геометрию. Так как мы поймем, что правильно?

Великий американский математик Рихард Курант (его именем назван математический институт в Нью-Йоркском университете) и его соавтор Герберт Роббинс (профессор

Рутгерского университета) считали, что обе геометрии оказываются практически одинаково пригодными для употребления и для наших целей вполне годится евклидова модель: "Так как работать с евклидовой геометрией гораздо легче, чем с гиперболической, то мы и пользуемся ею, покуда рассматриваются небольшие (порядка нескольких миллионов миль!) расстояния. Однако нет оснований ожидать, что она наверное оказалась бы подходящей при описании физического мира в целом, во всех его обширных пространствах"[4].

Но как быть, если нам приходится описывать частицу Вселенной — скажем, Землю или яблоко? (Помните: с точки зрения геометра Земля и яблоко, в сущности, одно и то же.) Представим поверхность Земли или, например, яблока плоскостью. Нарисуем на яблоке треугольник. Если применить к поверхности яблока евклидову геометрию, то сумма углов этого треугольника должна будет равняться 180°. Но поскольку поверхность яблока искривлена, то сумма углов получается большей. Это может означать, что пятый постулат Евклида для этой плоскости не действует. Мы увидим, как на искривленной поверхности две прямые, будучи продолжением сегмента, соединяющего две точки кратчайшим путем, пересекутся. Все прямые, проведенные на поверхности яблока (или на поверхности Земли), — это большие окружности с центрами в центре сферы.

Немецкий математик Бернхард Риман в XIX веке разработал геометрию, которая реализуется на плоскостях с [постоянной положительной гауссовой] кривизной, где вместо прямых линий — геодезические и любые две из них пересекаются. Эту геометрию, которую называют эллиптической, или римановой, использовал Эйнштейн в общей теории относительности.

Картина мира по Евклиду была ограниченной и плоской. Наш мир искривлен. Современные люди легко покрывают расстояния достаточно большие для того, чтобы почувствовать на себе кривизну Земли. Конечно, никто из нас не ездит так далеко все время, однако мы можем легко вообразить (а воображение есть место, где вершится математика) кратчайшее расстояние между точками — траекторию авиаперелета, который осуществляется вдоль геодезической линии, даже если прежде этого термина не слышали.

Прямые не длятся бесконечно, а замыкаются, образуя окружности. И разумеется, любые линии пересекаются. То, что казалось абсурдом в XVIII веке, стало точным отражением нашего повседневного опыта. Другими словами, наш мир значительно вырос. Но тут возникли два вопроса: насколько вырос мир и что значит "больше"?

Здесь на авансцену выходит топология — раздел математики, родившийся в 1736 году в Санкт-Петербурге. Швейцарский математик Леонард Эйлер, работавший тогда в России, освободил геометрию от бремени измерения расстояний. Он напечатал статью, посвященную задаче о семи мостах Кенигсберга. Мэр этого города задал знаменитому математику вопрос: можно ли пройти по всем семи мостам, не проходя ни по одному из них дважды?

вернуться

3

Определения приводятся по кн.: Начала Евклида. Перевод с греческого и комментарии Д. Д. Мордухай-Болтовского. —М.—Л.: ГТТИ, 1948. (Прим. перев.)

вернуться

4

Цит. по: Курант Р, Роббинс Г. Что такое математика? — М.: МЦНМО, 2001. (Прим перев.)

31
{"b":"184807","o":1}