Литмир - Электронная Библиотека

Тем не менее я не считаю, что эти два класса многообразий настолько разные с математической точки зрения. Мы использовали геометрический анализ для построения многообразий Калаби‑Яу, и я убежден, что эти инструменты помогут нам построить не‑кэлеровы многообразия, допуская, что сначала мы должны решить уравнения Строминджера или, по крайней мере, доказать, что решения существуют. Физикам необходимо знать, действительно ли не‑кэлеровы многообразия могут существовать и если да, то удовлетворяют ли всем четырем уравнениям сразу, поскольку, если это невозможно, то люди, работающие над этой задачей, просто даром теряют время. Я занимаюсь ею почти двадцать лет с тех пор, как Строминджер выдвинул свою идею, и не могу найти решение. То есть решение без сингулярностей, так как Строминджер нашел несколько решений с сингулярностями, но они оказались чрезвычайно сложными. И люди начали верить, что решений без сингулярностей не существует.

Затем произошел небольшой прорыв. Я и несколько моих коллег обнаружили решения без сингулярностей для пары специальных случаев. В первой статье, которую я завершил в 2004 году вместе с математиком из Стэнфорда Юном Ли (моим бывшим аспирантом), мы доказали, что класс не‑кэлеровых многообразий математически возможен. Фактически для каждого известного многообразия Калаби‑Яу мы доказали существование целого семейства не‑кэлеровых многообразий, которые достаточны похожи по структуре, чтобы входить в одно семейство. Таким образом, впервые существование этих многообразий было подтверждено математически.

Хотя решение уравнений Строминджера является чрезвычайно трудным делом, мы с Ли сделали самое легкое, что можно было сделать в этой области. Мы доказали, что эти уравнения можно решить для частного случая, когда не‑кэлерово многообразие очень близко к многообразию Калаби‑Яу. Фактически, мы начали с многообразия Калаби‑Яу и показали, как его деформировать, чтобы геометрия или метрика уже не были кэлеровыми. Хотя многообразие все еще могло поддерживать метрику Калаби‑Яу, его метрика уже была не‑кэлеровой, что сделало возможными решения системы Строминджера.

Вероятно, важнее то, что Ли и я обобщили теорему DUY (о которой упоминалось в девятой главе и название которой является аббревиатурой фамилий ее авторов – Дональдсона, Уленбека и Яу), чтобы охватить все не‑кэлеровы многообразия. Теорема DUY имеет большое практическое значение, потому что она автоматически берет на себя решения двух из четырех уравнений Строминджера, связанных с эрмитовой теорией Янга‑Миллса, и позволяет решить уравнения суперсимметрии и устранения аномалий.

Учитывая, что DUY является инструментальным средством для компактификаций Калаби‑Яу (с точки зрения воспроизведения калибровочных полей), мы надеемся, что она также пригодится для не‑кэлеровых компактификаций.

Одним из перспективных способов получения не‑кэлеровых многообразий, подразумеваемый гипотезой Рида, является применение конифолдного перехода к уже известному многообразию Калаби‑Яу. Я недавно рассматривал эту возможность с Юном Ли и Джи‑Хианом Фу, бывшим своим гарвардским аспирантом, сейчас работающим в Фуданьском университете в Шанхае. Исходное многообразие, с которого мы начали, предложил Херб Клеменс, один из архитекторов конифолдного перехода, но он обеспечил нас только общей топологией, то есть многообразием без метрики и, следовательно, без геометрии. Фу, Ли и я пытались придать этому многообразию некоторую форму, показав существование метрики, которая будет удовлетворять уравнениям Строминджера.

Эти уравнения представляются уместными здесь, потому что они применимы не только к не‑кэлеровым многообразиям, но также к многообразиям Калаби‑Яу, которые представляют собой частный случай. Кроме того, гипотеза Рида включает процедуру, которая позволяет перейти от многообразий Калаби‑Яу к не‑кэлеровым многообразиям и обратно.

Таким образом, если вам нужен набор уравнений, которые охватывают обе геометрии, то формулировки Строминджера – возможно, именно то, что вы искали. Мы с коллегами доказали, что многообразие Клеменса удовлетворяет трем из четырех уравнений Строминджера, но пока мы не нашли решение для самого трудного из всех уравнений – уравнения устранения аномалий. Я все еще убежден, что искомое многообразие существует. В конце концов, если наши усилия увенчались решением трех уравнений – это уже хорошо. Но пока мы не решим последнее уравнение, у нас не будет необходимого доказательства.

Фу и я пошли дальше, показав, как построить класс, топологически отличный от не‑кэлеровых многообразий, который удовлетворяет уравнениям Строминджера. Если вести построение с нуля, а не путем модифицирования известных многообразий Калаби‑Яу, то получаемые многообразия, по сути, являются не‑кэлеровыми. Они состоят из поверхностей K3 (четырехмерные многообразия Калаби‑Яу) с двухмерными торами, присоединенными к каждой точке. Решение уравнения Строминджера в этом случае включает решение уравнения Монжа‑Ампера (класс нелинейных дифференциальных уравнений, который мы обсуждали в пятой главе), которое сложнее, чем то, которое мне пришлось решать для доказательства гипотезы Калаби. К счастью, мы с Фу смогли оттолкнуться от наших ранних работ. Наш метод, как и в случае с доказательством гипотезы Калаби, включал априорное оценивание, то есть мы должны были предсказать диапазон значений разных параметров.

Мы с Фу нашли особый метод, позволивший нам решить не одно, а все четыре уравнения. В то время как в случае гипотезы Калаби я смог получить все возможные решения уравнения Монжа‑Ампера, на этот раз мы получили лишь подмножество целого класса решений. К сожалению, мы не достаточно хорошо понимали систему, чтобы определить, насколько большим или маленьким является это подмножество. Но, по крайней мере, мы сделали несколько предварительных шагов.

Большинство физиков, которые начинали работать с не‑кэлеровыми компактификациями, допускают, что уравнения Строминджера можно решить, не беспокоясь о доказательстве этого. Ли, Фу и я показали, что эти уравнения можно решить в отдельных случаях, которые мы пока не определили, но это еще один способ доказать, что специфические многообразия, то есть какая‑то часть всех не‑кэлеровых многообразий, действительно существуют. Это явилось всего лишь отправной точкой для решения более существенной задачи: нахождение метрики, удовлетворяющей системе Строминджера и всем ее уравнениям. Несмотря на то что пока никто и близко не подошел к решению этой проблемы и все признаки указывают на то, что проблема дастся физикам нелегко, мы с коллегами нашим небольшим вкладом, по крайней мере, подняли вопрос о его возможности.

Бекер утверждает, что, если все удастся, то это будет важнее, чем доказательство гипотезы Калаби. Может быть, она права, но об этом рано говорить. Пока я не доказал гипотезу Калаби, я не понимал ее полной значимости. И даже после ее доказательства физики еще восемь лет не осознавали его важности и значения сопутствующей теоремы. Но я продолжал изучать пространства Калаби‑Яу, потому что для меня они выглядели привлекательно. Пространства, описываемые системой Строминджера, также имеют определенный шарм. Сейчас мы уже увидели, что дело пошло.

Тем временем мы с Фу предложили многообразия, которые мы создали для наших друзей‑физиков, сотрудничая с Мелани Бекер, Катрин Бекер, Ценгом и, можно сказать, даже со Строминджером, если причислить его к нашим единомышленникам. Затем наша группа построила еще больше примеров исходной модели Фу‑Яу. В отличие от гетеротической компактификации теории струн, описанной в последней главе, наша команда не смогла получить правильные характеристики частиц или три поколения частиц из Стандартной модели. «Что мы имеем, – говорит Мелани Бекер, – так это стабилизованные модули, что является необходимым предварительным условием ко всему, а также реальным способом вычисления масс».[202]

На данном этапе трудно сказать, что получится из усилий физиков, играющих с не‑кэлеровыми компактификациями и многими другими альтернативами многообразий Калаби‑Яу (в том числе в области под названием не‑геометрические компактификации), исследование которых ведется в настоящее время. Справедливости ради стоит поставить вопрос: действительно ли компактификации Калаби‑Яу являются верным описанием нашей Вселенной или только простейшей моделью, из которой мы черпаем знания, – фантастический эксперимент, дающий возможность узнать, как работает теория струн и как мы можем объединить суперсимметрию, силы и прочее в «окончательной» теории.

76
{"b":"183364","o":1}