Литмир - Электронная Библиотека

Тепловизионные картинки самых различных тел, раскрашиваемые компьютерами в искусственные цвета, известны по крайней мере лет 20. Как они отличаются от термоизображений, получаемых сегодня в лаборатории радиоэлектронных методов исследования? Да примерно так же, как набор отдельных фотографий от мультипликационного фильма. До сих пор тепловидение было статичным.

Снимался кадр до лечения, затем после. Далее картинки сравнивались. Лишь взглянув с помощью теплового телевидения на биообъект как на качественно нестационарную систему, физики поняли, что до сих пор за кадром оставалось самое, пожалуй, интересное: наполненная событиями «внутренняя жизнь» организма, где «все течет и изменяется». Изменяется внешняя среда и учащается дыхание человека, изменяется период биений его сердца, кровь приливает к коже, и это мгновенно отражается на параметрах, излучаемых им полей. Чтобы диагностировать весь организм в его сиюсекундной «динамике», нужно учесть, что у дыхательной системы свой ритм, у терморегуляционной — другой, у сердечно-сосудистой — третий. Например, динамику дыхания можно описать тепловизионным фильмом, кадры которого отснимаются через 100 мс. За несколько секунд можно проследить изменение кровотока в течение дыхательного цикла, что во многих случаях позволяет, загодя, распознать симптомы надвигающегося заболевания сосудов.

Для тепловидения наиболее информативны открытые части тела — руки, лицо. Вот на экране цифрового дисплея серия термограмм, на которых запечатлен процесс дыхания человека. Компьютер пометил синим холодные, а красным горячие участки кожи, причем так, что различается тепловой контраст в 0,01 градуса. Хорошо видно, как в процессе дыхания — от выдоха до вдоха ноздри меняют окраску от оранжевой до фиолетовой. Причина простая: мы выдыхаем теплый воздух, а вдыхаем холодный.

Однако всевидящее око тепловизора подметило и нетривиальные детали. Отчего вдруг в момент выдоха кожные покровы лица приобретают голубоватый оттенок, остывают? Оказалось, это регистрируется спад давления крови в капиллярной сети в момент выдоха, характеризующий «качество» работы системы кровообращения.

Каким же образом расшифровываются заповедные тайны нашего организма? Записываются последовательно несколько сот термоизображений, отражающих один период дыхания. Далее с помощью специальных алгоритмов ЭВМ оконтуривает или выделяет разным цветом области, где сосуды характеризуются «однотипным» поведением. Таким образом и был впервые получен функциональный «портрет» системы, позволивший весьма детально оценить, где сосуды бодро откликаются на ритм дыхания, а где вяло, с опозданием. Его информационная значимость, как считают медики, может быть выше, чем у традиционной термограммы. Самое же главное заключается в том, что отклонения организма от нормы можно обнаружить до того, как в системе кровообращения возникают патологические изменения.

Но, строя динамичные ИК-термоизображения, удается зарегистрировать лишь те процессы, что происходят на поверхности тела, или, говоря точнее, в миллиметровом слое эпидермиса. А вот как оценить состояние внутренних органов? Ведь они в ИК-диапазоне «молчат», поскольку человеческое тело для инфракрасных волн непрозрачно.

Докладывает СВЧ-излучение

Быстро узнать температуру человека и в считанные секунды дать ответ — здоров он или заболел? — можно по каналу радиотеплового диапазона. Мозг, сердце, печень с глубины 5-10 см активно «сигналят» своим радиотепловым излучением о температурных и других жизненно важных ритмах организма. Характерная деталь: чем длиннее волны, тем с большей глубины приходит излучение. И наоборот, чем короче излучаемая волна, тем ближе к поверхности находится сигнализирующий орган.

Учтя эту тонкость и работая на более коротких волнах, исследователи прицельнее определяли параметры органа «излучателя», соответственно и его радиотепловой «портрет» получался более четким. Зато переходя на более длинные волны, удается, как уже говорилось, увеличить глубину зондирования. Компьютерная обработка приходящих с разных глубин сигналов уже сейчас позволяет воссоздать пространственную картину температурных полей организма.

Вдумаемся в этот факт, сулящий в самом недалеком будущем переворот в медицинской практике. Еще сегодня, ставя градусник под мышку больному, терапевт констатирует лишь «среднее» повышение температуры тела у своего пациента. А тут благодаря чувствительным радиометрам можно абсолютно точно указать температурящий орган.

Разумеется, чтобы уловить весьма слабый «огонек» сигнала, биообъект приходится ограждать от мощных «прожекторов» помех как природного, так и техногенного происхождения с помощью специальных экранированных камер. Для построения полной картины поля на входе измерительно-вычислительного комплекса устанавливается матричная система антенн-датчиков. Четыре чувствительных радиометра, каждый настроенный на одну из волн в диапазоне от 3 до 30 см, уверенно регистрируют температуру любой точки тела — от поверхности до четырехсантиметровой глубины.

Гак впервые в мире были получены динамические радиотепловые карты, скажем, брюшной полости, карты радиояркостной температуры головного мозга и т. д.

В волнах электрического и магнитного полей

«Человек — это хрупкий сосуд, наполненный драгоценной влагой жизни», — говорили встарь. «Наше тело — это сосуд с влагой электрохимической», — перефразировали поэтичное утверждение древних радиоэлектронщики, имея в виду, что в человеке, как в батарейке, постоянно циркулируют электрические токи. Растекаясь по всему телу, они выходят на его поверхность, содержат в себе ценную информацию о глубинных, происходящих в органах физиологических процессах. Стоит, скажем, «забарахлить мотору» — и, записывая электрокардиограмму, специалисты без особого труда определят по ее стесанным зубцам или растянутым пикам не в унисон «стучащий узел».

Впрочем, сколь бы ни было информативно электрическое поле, наружу оно выносит весьма огрубленную из-за неоднородности среды информацию о породивших их источниках.

Дело в том, что, изучая электрические поля, можно судить о физиологическом состоянии биообъекта лишь опосредованно — по измененным токам. При этом высокопроводящие ткани организма, частично экранируя низкочастотные электрические поля, искажают содержащуюся в них полезную информацию.

Однако поставив один заслон — электрический — на пути исследователей, природа в то же время сама позаботилась об обходном — магнитном — варианте. Человеческое тело, будучи диамагнитным по природе, абсолютно прозрачно (кстати, одежда тоже) для магнитных полей. Поэтому, регистрируя картину магнитных полей около человека, можно с высокой точностью определять, скажем, область патологии в миокарде или в мозге.

Факт этот удивителен хотя бы уже тем, что если б кто-нибудь лет 15–20 назад сказал, что удается «регистрировать» магнитные поля человека, физики отнеслись бы к подобному сообщению скептически. Еще бы, ведь для этого нужна аппаратура, способная реагировать на миллиардную долю эрстеда. Это в миллиарды раз меньше напряженности магнитного поля Земли.

Тем не менее сегодня в лаборатории эта сложнейшая научно-техническая задача решена с помощью магнитометрической системы, включающей сверхпроводящий квантовый интерферометр (СКВИД) и трехкомпонентную систему Гельмгольца, служащую для подавления внешних магнитных помех; исследователям удалось снять динамические магнитные карты сердца и мозга. Детально воспроизводится процесс распространения по миокарду электрического возбуждения.

Магнитокардиограмма гораздо полнее электрической рассказывает о мельчайших подробностях работы сердечной мышцы, с высокой точностью указывает пораженную область.

Сейсмичны ли недра биообъекта?

Обычная электрокардиограмма снимается с помощью электродов, прикрепляемых к телу пациента. А можно ли записать электросигналы сердца, органов дыхания, мышц, не увешивая человека присосками электрических «пиявок»? Оказывается, для этого достаточно пациента поместить в экранированную от внешних полей клетку Фарадея, а антенны-зонды направить на исследуемый орган.

4
{"b":"175347","o":1}