Литмир - Электронная Библиотека
Содержание  
A
A

— Не забывай, — сказала Таня, — что 165 вовсе не обозначало плату за проезд. Чтобы узнать цену, надо было с этим числом произвести ещё целый ряд манипуляций.

— Хоть бы и так, — хорохорился Нулик. — Все равно самое большое число, которое получится от перестановок цифр в числе 165, это 651. А 651 как-никак меньше, чем число 732, которое выбрала Единичка!

— А ведь правда… — раздумчиво протянул Сева. — Даже наименьшее число, которое получается от перестановок цифр 7, 3 и 2, — число 237 и то больше числа 165.

— Эх вы, теоретики! — поддразнила Таня. — Лучше подсчитайте, что должен был заплатить Магистр за своего верблюда и что Единичка — за своего.

— Это мы могим! — весело согласился президент и принялся писать веточкой на снегу. — Сперва сделаем все возможные перестановки цифр в числе 165. Вот они: 165, 156, 561, 516, 651 и 615. Теперь сложим эти числа. Получим… Не мешайте, а то я собьюсь… получим 2664. Проверим…

— И проверять нечего, все верно, — торопила Таня.

— Теперь подсчитаем, что должна была заплатить Единичка, — сказал Сева. — Вот перестановки цифр числа 732: 732, 723, 273, 237, 327 и 372. Сложим их и получим… что такое! Тоже 2664.

— В чём же дело? — недоумевал президент. — Выходит, в этом случае любое трехзначное число даст один и тот же результат? Или, может быть, 165 и 723 — числа специально подобранные?

— Уж конечно, специально, — сказала Таня.

— Вот это да! Значит, проезд на любом верблюде стоил одинаково. Но как же удалось подобрать такие числа?

— А ты посмотри на них внимательней, — посоветовала Таня. — Не найдётся ли у них какого-нибудь общего признака?

— Найдётся! — отвечал президент весьма язвительно. — Все цифры у них разные.

— Цифры действительно разные, — подтвердила Таня, — зато сумма этих цифр одна и та же: 12.

— Верно! — обрадовался Нулик. — 1+6+5=12. И 7+3+2 тоже равно двенадцати. Может быть, то же свойство было и у всех других чисел на верблюжьих табличках?

— Очень возможно. Недаром Единичка сказала, что погонщики в Террапантере — народ справедливый.

— И всё-таки… — Нулик сделал непреклонное лицо, — всё-таки я требую доказательства.

— Сей момент, ваше президентство! — насмешливо поклонилась Таня. — Будет сделано. Запишем любое трехзначное число в общем виде. Это 100a+10b+c. Понятно?

— Что за вопрос? Конечно! Здесь a — число сотен, b — число десятков, c — число единиц.

— Гениально! Теперь сделаем в этом числе все возможные перестановки цифр. Напишем их сразу столбиком, а потом сложим:

В поисках похищенной марки - eq019.jpg

Не желаете ли, ваше президентство, преобразовать эту сумму? — спросила Таня.

— Желаю, — отвечал его президентство без особого энтузиазма. — Я бы… я бы вынес 2(a+b+c) за скобки.

— Совершенно с вами согласна. Получится при этом

2(a+b+c)(100+10+1).

— А это все равно что 222(a+b+c), — подсчитал Нулик. — Но что из этого следует?

— Только то, что сумма перестановок зависит не от самого числа, а от суммы его цифр. И значит, все трехзначные числа с одинаковой суммой цифр в этом случае всегда будут давать одно и то же число.

— Ха-ха! — выдохнул президент, несколько подавленный роскошным Таниным доказательством. — Выходит, для всех трехзначных чисел с суммой цифр, равной двенадцати, ответ будет всегда 222*12, то есть 2664. Теперь хорошо бы ещё узнать, что получится, если взять четырех-, пяти- или двенадцатизначные числа…

— Да то же самое, — сказала Таня, — только численный результат будет другой.

— Обязательно займусь этим на досуге! Жаль, досуга у меня маловато, — проворчал Нулик, постукивая ногой об ногу и выразительно поглядывая на уютные окна кафе, мимо которого мы как раз проходили.

Это было понято, как безмолвный сигнал к атаке, и через мгновение мы уже находились внутри, за стеклянной дверью.

В кафе было тепло и, к счастью, безлюдно. Я говорю — к счастью, потому что Нулик, предвкушая лакомое угощение, взыграл и принялся носиться между столиками, описывая вокруг них замысловатые фигуры.

— Это я плутаю по лабиринту, — объяснил он, — скоро доберусь до мини-Тавра. Только вот где найти цепочку Афродиты?

Олег комически схватился за голову.

— Опять этот младенец повторяет ошибки Магистра!

— Ничуть не бывало! — выкрутился президент. — Просто я вас подначиваю. Из педагогических соображений…

Олег понимающе кивнул.

— Из педагогических, говоришь? Ну, тогда тебе, стало быть, известно, что произносить надо Минота́вр. И это тебе не мини, а совсем даже наоборот: огромное чудище. Получеловек, полубык.

— А разве такие бывают? — наивно спросил Нулик, сразу позабыв о педагогических соображениях.

В поисках похищенной марки - _031.jpg

— Если верить древнегреческому мифу, один, во всяком случае, имелся. В давние времена, на острове Крит, у царя Мино́са. Этот самый Минос построил на Крите такой лабиринт, что выбраться оттуда не было никакой возможности. Здесь и поселил царь своего прожорливого и свирепого человеко-быка, а в пищу ему отправлял провинившихся и обречённых в жертву богам людей. Плутая по запутанным коридорам, те в конце концов неминуемо попадали в пасть к Минотавру.

— Безобразие! — возмутился Нулик. — Неужели никто с этим чудищем не справился?

— Представь себе, такой человек нашёлся. Звали его Тезе́й.

— Тезей… — повторил Нулик, хихикнув. — Тезей-ротозей…

— То-то и оно, что не ротозей. Тезей сумел-таки разделаться с Минотавром и выбрался из лабиринта.

— С помощью цепочки Афродиты?

— Да нет, греческая богиня Афродита тут ни при чём. Помогла Тезею дочь Миноса — Ариа́дна. Она дала ему клубок ниток. Тезей как вошёл в лабиринт, так сразу стал разматывать этот клубок. А когда победил Минотавра, пошёл обратно вслед за нитью, сматывая её по пути. Так нить вывела его на свободу. Отсюда и пошло выражение «нить Ариадны» — нить, которая помогает выбраться из запутанных, затруднительных обстоятельств.

Президент озабоченно поджал губы.

— Теперь без катушки ниток в кармане шагу не сделаю! Мало ли что…

Опасения его были прерваны официанткой, которая спросила, что нам принести. Я заказал кофе, слоёных пирожков и трубочек с кремом.

Нулик опасливо зыркнул глазом.

— Боюсь, у меня на такой пир пресмыкающихся не хватит.

— Чего-чего? — недоуменно переспросил Сева.

— Ну, скарабеев, — объяснил президент и очень обиделся, когда все дружно захохотали.

— Нет, он меня уморит! — сказал Сева, утирая глаза. — Какие же скарабеи — пресмыкающиеся? Они же вовсе насекомые. Попросту навозные жуки. А их, между прочим, в Древнем Египте считали священными и потому изображали на кольцах, печатях, всяких амулетах. Считалось, что скарабей приносит счастье…

В поисках похищенной марки - _032.jpg

— Да ну?! — Президент даже подпрыгнул. — Хочу скарабея, хочу скарабея!.. — затараторил он, как Буратино.

Пришлось мне призвать его к порядку:

— Ты где находишься?

— В кафе.

— Так и веди себя соответственно. А хочешь говорить, так говори что-нибудь дельное. Вот хоть разберись в задаче со скарабеями.

Но охота говорить у президента почему-то разом прошла, и за дело взялся Сева. Выступление его было кратким — оно и понятно: он решал задачу алгебраическим способом.

— Число скарабеев, принесённых Черным Львом, обозначим буквой a. Тогда число скарабеев, добытых Мистером-Твистером, равно 2a — ведь у него их было вдвое больше! Число скарабеев, которых отнял у Чёрного Льва Джерамини, обозначим через икс. Выходит, что у этого Льва осталось…

— …(a-x) скарабеев, — подсказала Таня.

— Верно. А так как у Мистера-Твистера Джерамини отнял в три раза больше скарабеев, чем у Чёрного Льва, число это равно 3x. И значит, осталось у него (2a-3x) скарабеев. Известно, что после этого грабежа у обоих полицейских денег оказалось поровну. Поэтому мы можем смело приравнять (a-x) и (2a-3x). Вот вам и уравнение: (a-x)=(2a-3x) Ну, президент, включайся, решай!

22
{"b":"17319","o":1}