Литмир - Электронная Библиотека

Поэтому мы и можем сказать так. Топология есть наука о пространственном становлении, в котором не становится (инвариантна группе преобразований) только фигура как перво–принцип. Проективная геометрия есть наука о пространственном становлении, в котором не становится только фигура как отвлеченный принцип (как общее понятие). Аффинная геометрия — то же, когда не становится только фигура как определенный принцип, т. е. как конечная фигурность. Общеметрическая геометрия—то же, когда не становится фигура как индивидуально–конечная фигурность. Все это есть, таким образом, разная степень диалектической зрелости становления, зависящая от того, какие и в каких размерах категории воплощаются в этом становлении.

4. а) В качестве добавления скажем еще, что, поскольку принцип становления вносит возможность разнообразных комбинаций логически выведенных аксиом независимо от их чисто логической взаимосвязи (включая и саму непрерывность), вполне мыслимо конструирование геометрии и без всякого принципа непрерывности. Гильберт построил т. н. неархимедову геометрию, содержащую в себе все аксиомы, как раз за исключением аксиомы непрерывности [53]. И тем же самым занимался раньше его еще Веронезе [54], объединявший неархимедову арифметику и геометрию с теорией трансфинитных чисел Кантора. Хотя подобное построение по существу своему еще более оригинально и неожиданно, чем открытие Лобачевского (так как у последнего изменена только метрика, а [в] неархимедовой же геометрии нарушен самый континуум), все же формально и философски тут все совершенно обычно, и неархимедова геометрия — только одна из многочисленных диалектических теорий [55]вообще.

b) Все предыдущие установки являются только принципом для реального построения диалектики геометрии, которое мы даем в дальнейшем. Там все эти аксиоматические принципы должны вырасти в зрелую систему. Здесь же от этого, конечно, необходимо воздерживаться, и может идти речь только о самых принципах. Это положение дела и можно зафиксировать следующим образом.

I. Становление конструируется —

a) по типу подвижного покоя (т. е. порядка следования элементов), остающегося неизменным в условиях бесконечного становления прочих категорий (iтопология: любые свойства геометрических фигур инвариантны в отношении с любым непрерывным преобразованием);

b) по типу подвижного покоя (порядка следования) и самотождественного различия (взаимопринадлежности, сопряжения элементов), остающихся неизменными в условиях неопределенного становления категории определенности {проективная геометрия: любые свойства фигуры инвариантны в отношении к группе коллинеаций);

c) по типу подвижного покоя, самотождественного различия и определенности бытия, остающихся неизменными в условиях неопределенного функционирования самого становления, т. е. в условиях, когда категория становления еще не положена как самостоятельная {аффинная геометрия: любые свойства фигуры инвариантны к параллельному проектированию).

II. Становление конструируется по типу трех указанных основных категорий едино–раздельности с сохранением собственного принципа как инобытийного и потому с превращением его в то, чем измеряется фигура {метрическая геометрия: любое свойство фигуры инвариантно к абсолютно–измерительным операциям). Следовательно, фиксируется наиобщая и наиабстрактная метрика — та, которая гипостазирует идеальную фигурность во всей ее целостности, минуя те ее искажения, которые возникают от неполного числа категорий едино–раздельности. Эта метрика, однако, может быть и иной (она возникает уже в связи с принципами конгруэнтности и параллельности).

III. Становление конструируется по типу трех указанных основных категорий едино–раздельности, но без сохранения своего собственного принципа и как самостоятельного, и как подчиненного; это становление, нарушающее самый принцип непрерывности, становление непрерывности (неархимедова геометрия).

В таком виде можно было бы представить аксиоматическую диалектику основных типов геометрических построений, основанную на едино–раздельности и непрерывности.

5. Систематический обзор геометрии с точки зрения диалектики покажет нам, вообще, весьма большое разнообразие в комбинировании, а также и в формах развития основных аксиом. Мы, например, ничего не сказали о геометрии без всякой категории подвижного покоя. Однако вполне возможна геометрия, в которой отсутствуют аксиомы подвижного покоя. Таковой является геометрия Римана, являющаяся не чем иным, как сферической геометрией, а на сфере о трех диаметрах в одной диаметральной плоскости совершенно нельзя сказать, какой из них находится между двумя другими. Идея порядка здесь не имеет смысла, как неприменима она еще и к мнимым точкам (последние вообще не мыслятся размещенными в пространстве).

Так же, развивая начала проективной геометрии, мы столкнулись бы, например, с теоремой Дезарга. Если прямые, соединяющие попарно вершины двух треугольников, расположенных в двух плоскостях и не имеющих общей вершины, сходятся в одной точке, то соответственные стороны этих треугольников пересекаются в грех точках, расположенных на одной прямой, а именно на прямой пересечения плоскостей треугольников. Иначе можно было бы сказать,, что если два треугольника, принадлежащие различным плоскостям, перспективны, то они также и соответственны. Эту теорему можно доказать, исходя из аксиомы самотождественного различия плоскости и из аксиомы конгруэнтности на плоскости (категорию конгруэнтности мы пока еще не вывели, см. ниже, §66.4). Однако ее можно доказать и на основании других аксиом самотождественного различия, но только применяя их не к плоскости, а к пространству. Гильберт же доказал теорему Дезарга при помощи только одних проективных аксиом плоскости, т. е. при помощи наших аксиом самотождественного различия, притом только плоскостных. Для этого, конечно, необходимо соответствующим образом расширить понятия точки, прямой и плоскости. [56]Но тогда возможна недезаргова геометрия, наглядным примером которой Пуанкаре приводит луч, идущий по прямой через эллипс, но изгибающийся внутри его в дугу и выходящий из него тоже по прямой.

Так или иначе, но Штаудт доказал теорему Дезарга исключительно лишь при помощи «аксиом сочетания», примененных к пространству. А этот факт и значит, что проективная геометрия вырастает прежде всего на категории самотождественного различия.

Точный анализ подобных конструкций уже далеко выходит за пределы простой аксиоматики.

6. Что касается теории множеств, то предыдущая геометрическая дедукция типов становления с точки зрения категорий едино–раздельности, очевидно, должна дать руководящий принцип и для соответствующей дедукции моментов теоретико–множественной области.

a) Весьма наглядным делается, прежде всего, место теоретико–множественной топологии в системе аксиоматических установок вообще. Именно, под топологией понимается наука, изучающая те свойства множеств, которые сохраняются в условиях взаимно–непрерывного соответствия. Что в центре внимания здесь стадия непрерывности, это ясно; и что в условиях этой непрерывности мы соблюдаем только последовательность элементов ( = категорий подвижного покоя), отвлекаясь от всякой фигурности, это тоже ясно. Что же касается аффинных и проективных [множеств] (в смысле аналогии с проективной геометрией), то здесь также, по–видимому, принципиально возможны соответствующие построения.

Особо поговорим о метрических множествах, т. е. о понятии меры в применении к теории множеств.

b) Мы уже знаем (§ [ ]), что понятие меры возникает только в связи с категорией становления, и ниже, в § 66.2, мы этот вопрос развернем диалектически по поводу аксиом конгруэнтности. Сейчас нам важен тут только один принцип: становление структуры, если оно действует как самостоятельный принцип, застилает самую структуру новым слоем, который, будучи сравниваем с самой структурой, является ее измерением, или мерой. Математики поступают в определении меры весьма просто и наивно, за что, впрочем, в данном случае можно только похвалить. Можно было бы говорить и еще проще, не прибегая к нагромождению ненужных обозначений (к тому же обязательно греческими буквами) и пр.

68
{"b":"155367","o":1}