Что теперь происходит в экстенсивном числе и в геометрической совокупности? Здесь инобытие чистого числа. Это значит, что и тождество тут инобытийно, равно как и различие инобытийно. Инобытийное различие — это значит различие не чисто смысловых актов, но различие таких актов полагания, которые сами по себе еще ничего не говорят о различиях смысловых, о смысловых полаганиях. В арифметическом числе акт полагания равносилен акту смыслового различия. В геометрической же совокупности акт полагания еще ничего не значит как смысловое полагание. Это и есть признак того, что число перешло в свое инобытие. Оно расползается тут по актам своего полагания, но это совершенно не касается его смысловой разделенности, которая или прямо отсутствует (как в континууме), или обладает актами инобытийной связанности упомянутых актов (как во всякой геометрической фигуре).
Множество совмещает в себе все особенности и интенсивного числа, и экстенсивной фигурности [22]. Множество арифметично, ибо вся его математическая судьба разыгрывается в чисто числовой сфере, и тут нет и помина о каком–нибудь пространстве. С другой стороны, множество есть всегда инобытийное иолагание, откуда образуется и упорядоченность, т. е. некая фигурность, а это уже заставляет вспомнить о геометрии. Откуда получается фигурность в экстенсивном числе? Она получается из того, что акты полагания различным образом расставлены. Но почему они различным образом расставлены? Потому что имеется в виду не просто самый акт полагания (и их количество), но и то поле, на котором совершается полагание, которое, будучи измеренным, и дает различное расстояние и промежутки. Это и значит, что тут существенную роль играет инобытие, ибо «поле», где совершаются акты полагания, в точном диалектическом смысле есть только иное, чем самые акты. Теперь спрашивается: а если будет разная «расставленность» актов в самом числе, то как возможна такая конструкция? Ясно, что чистое экстенсивное бытие будет здесь вобрано в сферу самого числа и произойдет синтез чистого числа и чистой его инобытийности. Когда такой синтез произведен, мы получаем понятие множества. Но тогда числу необходимо вернуться из инобытия к себе самому, пережить отрицание своего отрицания и от этого получить новое утверждение.
В общей диалектике доказывается, что отрицание отрицания никогда не приводит к простому повторению того, что уже было утверждено. В синтезе тезис не просто повторен, но дан в соответственно новом плане; он здесь не только просто он, но еще и свое иное, еще и все инобытие, от которого он, взятый сам по себе, так резко отличался. Во множестве мы имеем как раз прекрасный пример этого диалектического возвращения к самому себе: тут дана и вся числовая природа, и вся инобытийно–геометрическая, но это уже не есть ни арифметическая, ни геометрическая совокупность, а нечто третье, высшее и более общее.
4. В связи с этим аксиома самотождественного различия примет форму, аналогичную с геометрией, но с переходом к чисто числовой интерпретации. В геометрической совокупности даны абсолютно изолированные по акту своего полагания элементы. Но в геометрии они даны сами по себе, без влияния на числовое содержание совокупности. Здесь же смысловое содержание множества будет в точности соответствовать инобытийным актам полагания. Соответственно изменится и формулировка аксиомы.
Аксиома самотождественного различия в теории множеств: множество есть совокупность абсолютно изолированных элементов, возвратившихся из инобытия к самим себе. Или подробнее: множество есть совокупность элементов, абсолютно изолированных по актам своего полагания, но отождествленных или различенных в точном соответствии с этими актами, однако же в их чисто числовом понимании.
5. Эту формулу выражают в теоретико–множественной аксиоматике иначе. Даже, собственно говоря, нельзя и сказать, что иначе. Дело в том, что обычная аксиоматика, с которой приходится встречаться в изложении теории множеств, слишком слепая и связанная; и никогда не знаешь, почему авторы берут эти, а не другие аксиомы и почему дают им то, а не иное выражение. Поэтому можно говорить только о более или менее отдаленном соответствии наивно–эмпирических обобщений конкретной теоретико–множественной аксиоматики с нашими аксиомами, выведенными в строжайшей системе с сознательным применением самого глубокого и точного философского метода—диалектического.
Именно, нашей аксиоме самотождественного различия в теории множеств соответствует, по–видимому, та аксиома Цермело и других, которая известна под названием аксиомы объединения, хотя и т. н. аксиома спаривания, по–видимому, говорит в значительной мере о том же самом. Аксиома объединения (Vereinigung) гласит у Цермело— Френкеля так: «Если т есть множество, содержащее по крайней мере один элемент, то существует объединенное множество, которое содержит в качестве элементов все вместе элементы т и также—только эти». Аксиома спаривания (Paarung) гласит: «Если а и b—два различных множества, то существует множество <д, ft), которое содержит в себе множества а и ft— и только их — и которое может считаться парой а и ft». Взятые сами по себе, эти аксиомы весьма важны, потому что очень важно отметить различие отношения, в которое вступают между собою элементы разных множеств в зависимости от объединения самих множеств. Так, если город состоит из улиц, а улицы — из домов, то дома суть элементы вовсе не города, а только улицы; если дома в каком–то смысле могут считаться элементами города, то это надо фиксировать специально, что, по–видимому, и сделано в «аксиоме объединения». То же соответственно и в «аксиоме спаривания».
Однако такая формулировка весьма формалистична и недостаточна. Прежде всего, тут совершенно не подчеркнут спецификум множества; и аксиома сформулирована так, что она применима и к любой совокупности, и прежде всего к чисто арифметической. Эта аксиома говорит ведь только то, что если мы имеем сумму 5 и 7, то она будет содержать в себе все единицы пятерки и все единицы семерки, и только их. Такая безобидная вещь, конечно, тоже очень интересна, но место ее в арифметике, а не в теории множеств. Далее, совершенно не показано, зачем понадобилась такая аксиома и как она связана с самим понятием множества. Между тем в нашей — чисто диалектической — дедукции со всею ясностью показано, откуда получается такая аксиома и каково специфическое значение ее в теории множеств. Именно, показано, каким образом множества, инобытийные одно в отношении другого и, следовательно, являющиеся только частями какого–то другого, более общего множества, могут слиться в новое множество, в котором и не узнаешь никаких бывших самостоятельных «частей», но в котором все элементы всех объединенных множеств сольются в новую цельность и подчинятся новой смысловой структуре. Тут важно не то, что два множества можно объединить в одно целое (это обычно делается и в арифметике с любыми числами), а важно то, что из этого объединения получается совершенно новая смысловая структура, новая цельность, имеющая весьма мало общего с каждым из объединяемых множеств, но заново освещающая и переделывающая элементы этих первоначально данных множеств. Это и зафиксировано в нашей основной формулировке.
§ 48. Формулировка трех выведенных аксиом при помощи понятий элемента и части.
1. Эта аксиома самотождественного различия может быть выражена иначе, и в связи с этим есть смысл в соответствующем видоизменении этой аксиомы и для интенсивного и экстенсивного числа. А именно, поскольку в этих аксиомах идет речь об инобытии, полезно ввести различие «элемента» и «части». Говоря кратко и обще, элемент есть смысловой момент целого, а часть — инобытийный момент целого. Например, если условно согласиться, что точное определение прямой есть то, которое всегда дается в школах («прямая есть кратчайшее расстояние между двумя точками»), то на основании этого можно сказать: элементом прямой является наличие двух точек и частью прямой является тот или иной ее отрезок. Это, однако, относится скорее к определению понятия прямой и к определению элементов понятия прямой, а не самой прямой, и потому можно привести более яркий пример. Если я разобью мелодию, разыгрываемую на скрипке, на отдельные ноты, то каждая такая нота будет частью мелодии; когда же я реально начинаю играть на скрипке и всю эту мелодию воспринимаю как целое, то каждая нота уже оценивается в сфере целого, и тогда она не часть целого, но элемент целого. Часть есть инобытие элемента точно так же, как и все части, т. е. все есть инобытие всех элементов, т. е. инобытие целого. Целое осуществлено во всем, и элемент осуществлен в соответствующей части. Целое объем лет части и одухотворяет их, без чего они остались бы самими собою и не имели никакой связи ни между собою, ни с целым. Никакая отдельная линия, взятая сама по себе, не есть квадрат, и мы можем взять тысячу прямых, и из них никакого квадрата не получится. Но достаточно взять только четыре прямых и привнести извйе идею квадрата, как вдруг получается и самый квадрат. Идея же четырехугольника тоже не имеет ничего общего ни с самими прямыми линиями, ни с линиями вообще; иначе пришлось бы сказать, что сама идея четырехугольника четыреугольна или четырелинейна, что было бы нелепостью. Итак, целое и все, т. е. элемент и часть, взятые сами по себе, не имеют друг к другу никакого отношения; они взаимно инобытийны и диспаратны. И только вступая в объединение, они начинают осмыслять и оформлять друг друга. В различиях формы этого объединения и коренится расхождение трех аксиом самотождественного различия.