+ 0 (K| и Л| — символы K- и Л-частиц).
Объяснение этого явления основано на постулировании наличия у некоторых (странных) элементарных частиц нового квантового числа — странности S, которое может принимать оба
0 + знака. Так, для Л|-частицы странность S=-1; для K|-частицы S=+1. Странность также сохраняется лишь в сильных и электромагнитных взаимодействиях, но не сохраняется в слабых. Обе реакции (Д.2) и (Д.3) определяются сильным взаимодействием; поэтому в них странность S должна сохраняться. В реакции (Д.2) странность не сохраняется (слева S=0; справа — S=-1), поэтому эта реакция не осуществляется. В реакции (Д.3) странность S=0 в обеих частях равенства. Поэтому эта реакция наблюдается и хорошо изучена.
Ц_в_е_т. Это количественная характеристика (заряд) сильного взаимодействия. Поскольку носителями сильного взаимодействия являются кварки, то цвет — характеристика взаимодействия между кварками. В отличие от электромагнитного взаимодействия, которое имеет два типа, соответствующие положительному и отрицательному зарядам, сильное взаимодействие характеризуется тремя модификациями.
Другое отличие заключается в том, что носители сильного заряда — кварки — не встречаются в свободном состоянии.
Вследствие этих особенностей невозможно использовать координатные оси для описания сильного заряда. В математике положительная и отрицательная полуоси эквивалентны, что и отражает полную эквивалентность положительных и отрицательных зарядов. Три числа (например, ±1, 0) не эквивалентны, следовательно, числовое представление «сильных» зарядов неадекватно. Поэтому для их представления был выбран физической образ — цвет. Известно, что в цветовой гамме содержатся три дополнительных цвета (красный, желтый и синий), которые в сумме дают белый цвет. Оба свойства дополнительных цветов (число три и обесцвеченность) хорошо представляют основные свойства сильного взаимодействия: три модификации заряда и нейтральность (относительно сильного взаимодействия) элементарных частиц, состоящих из кварков.
Подчеркнем еще раз, что, кроме общности символики, цвет как заряд сильного взаимодействия не имеет ничего общего с оптическими цветами.
В квантовой теории поля взаимодействие между частицами f| и f| осуществляется передачей частицы-переносчика B. 1 2 Частица-переносчик может передать массу (энергию), импульс, заряд, спин, изотопический спин, цвет и другие квантовые числа.
Свойства частицы-переносчика и константа взаимодействия полностью определяют все характеристики взаимодействия.
Наиболее хорошо изучена частица-переносчик фотон частица с нулевой массой покоя и спином, равным единице. Его изотопический спин, странность и цвет равны нулю. Поэтому при электромагнитном взаимодействии переносится от частицы f| к частице f| масса (энергия), импульс и спин. Цвет, 1 2 странность и другие квантовые числа не переносятся. Это простейший пример предопределенности взаимодействия свойствами частицы-переносчика.
В таблице сведены характеристики частиц-переносчиков различных взаимодействий.
Тип взаимодей- Название Электри- Изотопичесствия частицы- Спин ческий Цвет кий спин
переносчика заряд
Электромаг- Фотон 1 0 0 0 нитное
Слабое Бозон 1 ±1,0 0 1
Сильное Глюон 1 0 Три 0
цвета
Гравитационное Гравитон 2 0 0 0
Исключительно важной основой классификации частиц является их спин. Частицы с полуцелым спином (HP/2, (3/2) * HP…) называются фермионами, частицы с целым спином (0, HP, 2*HP…) — бозонами.
Кардинальное отличие в поведении фермионов и бозонов обусловлено разницей в симметрии волновых функций, описывающих состояние системы в целом. Фермионы не могут находиться в одном и том же квантовом состоянии (принцип Паули), для бозонов такой запрет отсутствует. Более того, система бозонов, находящихся в основном состоянии, стремится увеличить число частиц в этом состоянии (явление бозе-конденсации).
Частицы также классифицируются по силе их взаимодействия. Частицы, участвующие в сильном взаимодействии, называются адронами. Фермионы, не участвующие в сильном взаимодействии, называются лептонами. Как правило, лептоны легче адронов, однако есть и исключение: масса τ-лептона ~ 1.8*m|.
p
Число адронов (~300) существенно превышает число лептонов. Сейчас обнаружено пять лептонов (e, NU, τ, V |,
e V |), однако почти несомненно существует и шестой лептон ю τ-нейтрино. (((НАПОМИНАЮ, ЧТО ю В ИНДЕКСЕ ОБОЗНАЧАЕТ NU)))
Адроны с полуцелым спином называются барионами; их масса m > m|. Адроны с целым спином — мезонами.
p
Особое место занимают частицы-переносчики — бозоны. Их ± 0 масса (кроме W||-, Z|-бозонов) равна нулю.
Подчеркнем, что почти все частицы испытывают все четыре взаимодействия. Исключение составляют лептоны, которые не взаимодействуют сильно, и частицы-переносчики, о которых следует сказать особо. Фотон и W||-, Z|-бозоны переносят электрослабое взаимодействие, глюоны — сильное. Все частицы испытывают действие гравитации.
Гипотетический тяжелый X-бозон должен испытывать все четыре взаимодействия.
Адроны имеют размеры ~10**-13 см. В соответствии с современными представлениями «истинными» элементарными частицами должны быть точечные. Быть может, в соответствии с основным содержанием книги следовало бы говорить о «планковских точках» размерами ~10**-33 см. Поэтому адроны не являются «истинно» элементарными частицами, адроны состоят из иных пра-частиц.
В 1964 г. Геллман и Цвейг выдвинули гипотезу: адроны состоят из элементарных дробно-заряженных частиц — кварков. При конструировании адронов (их характеристик) из кварков следует руководствоваться следующими правилами: 1) все квантовые числа кварков, кроме массы, аддитивны, 2) фермионы состоят из трех кварков, бозоны из двух, 3) суммарный цвет кварков в адронах всегда равен нулю.
Сейчас твердо обнаружено пять сортов кварков. В течение последних лет появлялись сообщения о существовании шестого кварка, однако убедительного доказательства его существования нет. Обнаружение шестого кварка исключительно важно для построения теории большого объединения. Она базируется на допущении, что числа фундаментальных фермионов (лептонов) и адронов (кварков) равны. Поскольку число лептонов должно равняться (по крайней мере) шести, то должно быть таким же и число кварков.