Литмир - Электронная Библиотека

Роберт Шоу узрел в аттракторах движущую силу информации. Согласно его первоначальной и главнейшей концепции, хаос указывает естественный путь возврата к живым физическим наукам, к тем идеям, которые теория информации почерпнула из термодинамики. Странные аттракторы, соединяющие порядок и беспорядочность, придали новую значимость измерению энтропии систем. Они являются эффективными смесителями, которые создают непредсказуемость и таким образом повышают энтропию. По представлениям Шоу, они порождают информацию там, где ее ранее не существовало.

Однажды Норман Паккард, читая журнал «Американская наука», наткнулся на сообщение о конкурсе очерков, объявленном Луи Жако. Стоило подумать об участии: Жако, французский финансист, который выдвинул собственную теорию, касавшуюся структуры Вселенной, обещал победителю солидный приз. В конкурсе могли участвовать любые очерки, так или иначе соответствовавшие теме Жако. («Они получат груды писем от всяких чудаков», — предрекал Фармер.) Состав жюри впечатлял: туда входили светила французской науки. Паккард показал объявление Шоу. Работу нужно было представить на конкурс не позднее первого января 1978 г.

К этому времени члены группы регулярно встречались в большом старом доме недалеко от побережья. Сюда натаскали много мебели с блошиного рынка и компьютерного оборудования, применявшегося в основном для работы над теорией рулетки. Шоу держал там пианино, на котором наигрывал мелодии эпохи барокко или просто импровизации на классические и современные темы. Встречаясь у побережья, физики выработали собственный стиль исследований: процедуру оценки идей, просеивания их сквозь «сито» целесообразности, штудирования литературы и написания своих работ. В конечном счете молодые люди научились сотрудничать с журналами довольно эффективным образом, встав на путь коллективного творчества. Впрочем, первая статья была подписана именем Шоу (то была одна из немногих его работ), и он написал ее сам. И что характерно, подал с опозданием.

В декабре 1977 г. Шоу впервые направился на семинар, посвященный хаосу и проходивший в Академии наук Нью-Йорка. Профессор, руководивший Шоу, когда тот еще писал диссертацию по сверхпроводимости, оплатил ему проезд, и Роберт, не смущаясь отсутствием приглашения, прибыл послушать доклады ученых, которых знал только по публикациям. Давид Руэлль, Роберт Мэй, Джеймс Йорк — молодому физику эти люди внушали благоговейный трепет, как, впрочем, и плата за номер в отеле «Барбизон» — целых тридцать пять долларов! Астрономическая для него сумма… Внимая лекциям, он мучился противоречивыми чувствами. С одной стороны, было ясно, что он, сам того не ведая, двигался по уже изученной территории. С другой — что-то подсказывало Шоу, что он способен вынести на обсуждение новую важную идею. Он привез незаконченный вариант своей статьи о теории информации, написанный от руки и подколотый в скоросшиватель черновик. Попытки найти машинистку — сначала в гостинице, а затем где-нибудь еще — успеха не имели. Шоу был вынужден увезти работу назад. Уже потом, когда друзья начали расспрашивать о деталях поездки, он поведал, что кульминацией встречи стал банкет в честь Эдварда Лоренца, который наконец удостоился всеобщего признания, столь долго обходившего его стороной. Когда знаменитый ученый вошел в комнату, робко держа под руку жену, все присутствующие, встав со своих мест, приветствовали его аплодисментами. Эта овация просто ужаснула виновника торжества.

Несколькими неделями позже, во время поездки в штат Мэн, где у его родителей был дачный домик, Шоу все-таки отправил статью на конкурс Жако. Новогодние праздники уже миновали, но начальник местной почты великодушно проставил на конверте более раннюю дату. Очерк — смесь эзотерической математики и умозрительной философии, которую иллюстрировали похожие на кадры мультиков рисунки Криса Шоу, брата Роберта, — был удостоен похвального отзыва. Шоу получил достаточную сумму наличными, чтобы оплатить путешествие в Париж, где он мог востребовать награду. Достижение было скромным, но пришлось как раз ко времени, поскольку отношения Группы динамических систем с факультетом становились все более натянутыми. Молодые ученые отчаянно нуждались в любых проявлениях доверия извне, какие только могли снискать. Фармер забросил свою астрофизику, Паккард покинул нивы статистической механики, а Кручфилд не был готов к тому, чтоб сделаться аспирантом. На факультете чувствовали, что ситуация с парнями выходит из-под контроля.

Статья «Странные аттракторы: хаотическое поведение и поток информации» распространилась тогда в препринтном издании, тираж которого достиг в итоге около тысячи экземпляров. Это была первая старательная попытка соединить теорию информации и хаос.

Шоу представил в новом свете некоторые предположения классической механики. Энергия в природе существует как бы на двух уровнях: в макромире, объекты которого могут быть измерены и всесторонне описаны, и в микромире, где неисчислимое количество атомов находится в хаотическом движении, которое можно характеризовать только их средней скоростью, проявляющейся в макромире как температура. По замечанию Шоу, суммарная энергия микромасштабов может перевесить энергию макромасштабов, но в классических системах подобное тепловое движение не рассматривают, считая его изолированным. Таким образом, разные масштабы не сообщаются друг с другом, и, по словам Шоу, «совсем необязательно знать температуру, чтобы решить задачу из классической механики». Все же, с его точки зрения, хаотические и близкие к ним системы преодолевают разрыв между макромасштабами и микромасштабами и хаос порождается информацией.

Можно представить себе течение воды, огибающей препятствие. Как известно любому ученому, занимающемуся гидродинамикой, и каждому любителю гребли на каноэ, если поток струится достаточно быстро, то вниз по течению образуются водовороты. При определенной скорости завихрения остаются на месте, но с ее повышением начинают двигаться. Экспериментатор может различными методами получать данные о такой системы, например использовать детекторы вязкости и другие устройства. Но почему бы не попробовать самое простое? Выбрав точку, расположенную ниже препятствия по течению, надо через одинаковые временные интервалы наблюдать, в каком направлении закручивается завиток жидкости — направо или налево.

Если завихрения статичны, поток данных будет иметь следующий вид: налево — налево — налево — налево— налево — налево — налево — налево — налево — налево — налево — налево — налево — налево — налево — налево — налево — налево — налево — налево!.. По истечении некоторого времени наблюдатель начинает понимать, что фрагменты информации ничего нового о системе не сообщают. Возможно, завитки будут периодически менять направление: налево — направо — налево — направо — налево — направо — налево — направо — налево — направо — налево — направо — налево — направо — налево — направо — налево — направо — налево — направо… Хотя сначала ситуация кажется на порядок более интересной, она быстро исчерпывает все свои сюрпризы.

Когда же система, определенно в силу своей непредсказуемости, становится хаотичной, она начинает генерировать устойчивый поток данных, и каждое наблюдение приносит что-то новое. Такое поведение представляет собой проблему для экспериментатора, пытающегося полностью охарактеризовать систему. Как замечал Шоу, «он никогда не сможет покинуть лабораторию, поскольку поток превратится в непрерывный источник информации».

Но откуда исходит информация? Рассмотрим сосуд с водой. На микроскопическом уровне это мириады мириад молекул, кружащихся в полном случайностей термодинамическом танце. Подобно тому как турбулентность по цепочкам водоворотов передает энергию от больших масштабов вниз, к рассеивающим малым масштабам на уровне вязкости, так и информация передается назад от малых масштабов к большим. Во всяком случае, так Шоу и работавшие вместе с ним физики описали наблюдаемое явление. И каналом передачи данных наверх служит странный аттрактор, увеличивающий первоначальную неупорядоченность тем же образом, как открытый Лоренцом эффект бабочки «раздувает» крошечные неопределенности до размеров крупномасштабных моделей погоды.

63
{"b":"149202","o":1}