Рис. 5.1. Новый способ изучения маятника.
Одна лишь точка в фазовом пространстве (справа)передает всю информацию о состоянии динамической системы в конкретный момент времени (слева). Для простого маятника достаточно двух чисел, представляющих его скорость и местоположение.
Точки образуют траекторию, которая позволяет наглядно представить непрерывное поведение динамической системы в течение длительного периода времени. Повторяющаяся «петля» отображает систему, которая всегда воспроизводит одно и то же свое состояние. Если повторяющееся поведение устойчиво, как у часов с маятником, система при незначительных помехах возвращается к прежней орбите движения. В фазовом пространстве траектории вблизи орбиты как бы вовлечены в нее, а сама орбита является аттрактором.
Рис. 5.2. Аттрактор может являть собой одну-единственную точку. В случае с маятником, непрерывно теряющим энергию на трение, все траектории имеют форму спирали, закручивающейся внутрь, по направлению к точке, в которой система устойчива, — в таком случае движения не наблюдается вообще.
Как и многие из тех, кто занимался хаосом, Давид Руэлль подозревал, что видимые в турбулентном потоке объекты: перепутанные струи, спиральные водовороты, волшебные завитки, появляющиеся и вновь исчезающие, — должны отражать то, что объяснялось законами физики, но еще принадлежало к сфере таинственного и неоткрытого. В его понимании рассеивание энергии в турбулентном потоке должно было вести к своеобразному сокращению фазового пространства, притягиванию к аттрактору. Бесспорно, последний не оставался неподвижной точкой, поскольку поток никогда не приходил в состояние покоя, — энергия поступала в систему и уходила из нее. Каким еще мог быть аттрактор? Помимо описанного, согласно догмату, существовал лишь один возможный тип — периодический аттрактор, или замкнутая кривая, орбита, притягивающая все близлежащие орбиты. Если маятник получает энергию от подвеса и теряет ее из-за трения, то устойчивая орбита может представлять собой замкнутую петлю в фазовом пространстве, отражающую, например, регулярные колебательные движения маятника дедушкиных часов. Неважно, где именно начнет двигаться маятник, в конечном счете он придет именно к данной орбите. Но придет ли? В силу неких начальных условий (а они характеризуются минимумом энергии) маятник остановится. Таким образом, получается, что система в действительности имеет два аттрактора, один из которых является замкнутой петлей, а другой — фиксированной точкой. Каждый из аттракторов имеет собственную «нишу» в фазовом пространстве. В целом это напоминает две речные долины, разграниченные водоразделом.
В короткий период времени каждая точка фазового пространства может означать возможное поведение динамической системы. При изучении долгосрочной перспективы единственными моделями поведения становятся сами аттракторы. Все иные типы движения преходящи. По определению, аттракторам присуще важнейшее качество — устойчивость. В реальной системе, где движущиеся элементы сталкиваются и раскачиваются из-за помех окружающей среды, движение обычно возвращается к аттрактору. Толчок способен ненадолго исказить траекторию, однако возникающие случайные движения быстро исчезают, — даже если вдруг кошка заденет часы с маятником, минута не увеличится до шестидесяти двух секунд. Однако турбулентность в жидкостях — явление иного порядка, никогда не порождающее единичный ритм. Известное свойство такого явления заключается в том, что в данный момент времени наблюдается весь спектр возможных колебаний. Турбулентность можно сравнить с «белым шумом» или статикой. Могла ли простая детерминистская система уравнений описывать подобный феномен?
Руэлль и Такенс задались вопросом, обладает ли какой-либо иной тип аттрактора подходящим набором характеристик: устойчивостью, малым числом измерений, непериодичностью. Устойчивость означала достижение конечного состояния системы вопреки всем помехам в полном шумов мире. Малое число измерений предполагало, что орбита в фазовом пространстве должна представлять собой прямоугольник или форму типа коробки, обладающие лишь несколькими степенями свободы. Непериодичность подразумевала отсутствие повторений — ничего общего с монотонным тиканьем старых часов. С геометрической точки зрения вопрос казался чистой воды головоломкой. Какой вид должна иметь орбита, изображаемая в ограниченном пространстве, чтобы она никогда не повторяла и не пересекала саму себя? Ведь система, вернувшаяся в свое прежнее состояние, согласно принятой модели, должна следовать по своему обычному пути. Чтобы воспроизвести каждыйритм, орбита должна являть собой бесконечно длинную линию на ограниченной площади. Другими словами, она должна стать фрактальной.
Исходя из математических резонов, Руэлль и Такенс провозгласили, что описанный феномен должен существовать. Хотя они никогда не видели и не изображали его, одного заявления оказалось довольно. Впоследствии, выступая с речью на пленарном заседании Международного конгресса математиков в Варшаве, Руэлль заявил: «Научное сообщество весьма прохладно отнеслось к нашему предположению. Упоминание о том, что непрерывный спектр будет ассоциироваться с незначительным числом „степеней свободы“, многие физики посчитали просто ересью». Но были и другие — горсточка, не больше. Почувствовав всю значимость вышедшей в 1971 г. работы, они стали описывать то, что в ней подразумевалось.
На самом же деле к 1971 г. в научной литературе уже имелся один небольшой набросок того невообразимого чудовища, которое пытались оживить Руэлль и Такенс.
Рис. 5.3. Первый странный аттрактор. В 1963 г. Эдвард Лоренц смог вычислить только первые несколько элементов аттрактора для своей простой системы уравнений. Однако он понял, что «прослойка» двух спиральных крылообразных форм должна иметь необычную структуру, неразличимую в малых масштабах.
Эдвард Лоренц сделал его приложением к своей статье о детерминистском хаосе, вышедшей в 1963 г. Этот образ представлял собой сложную конструкцию из двух кривых, одна внутри другой, справа и пяти кривых слева. Лишь для схематичного изображения этих семи «петель» потребовалось пятьсот математических операций, с успехом выполненных компьютером. Точка, двигаясь вдоль указанной траектории в фазовом пространстве, демонстрировала медленное хаотичное вращение потоков жидкости, что описывалось тремя уравнениями Лоренца для явления конвекции. Поскольку система характеризовалась тремя независимыми переменными, данный аттрактор лежал в трехмерном фазовом пространстве. И хотя изображен был лишь его фрагмент, Лоренц смог увидеть гораздо больше: нечто вроде двойной спирали, крыльев бабочки, сотканных с удивительным мастерством. Когда увеличение количества теплоты в системе Лоренца вызывало движение жидкости в одном направлении, точка находилась в правом «крыле», при остановке течения и его повороте точка перемещалась на другую сторону.
Аттрактор был устойчивым, непериодическим, имел малое число измерений и никогда не пересекал сам себя. Если бы подобное случилось и он возвратился бы в точку, которую уже миновал, движение в дальнейшем повторялось бы, образуя периодичную петлю, но такого не происходило. В этом-то и заключалась странная прелесть аттрактора: являвшиеся взору петли и спирали казались бесконечно глубокими, никогда до конца не соединявшимися и не пересекавшимися. Тем не менее они оставались внутри пространства, имевшего свой предел и ограниченного рамками коробки. Почему такое стало возможным? Как может бесконечное множество траекторий лежать в ограниченном пространстве?