Литмир - Электронная Библиотека

Возникновение топологии и теории динамических систем восходит еще ко временам Анри Пуанкаре, который считал эти дисциплины двумя сторонами одной медали. На рубеже веков Пуанкаре, последним из великих математиков, применил геометрию для описания законов движения в физической. Вселенной. Пуанкаре раньше всех осознал проблему хаоса. Его работы содержат смутные указания на возможную непредсказуемость, столь же трудноуловимую, как и в исследованиях Лоренца. Однако после смерти французского математика топологию ожидал расцвет, а динамические системы — забвение. Само понятие вышло из употребления. Предмет, на который обратил свое внимание Смэйл, назывался теорией дифференциальных уравнений. Последние использовались для описания изменений системы во времени, причем, в согласии с господствующей традицией, объекты рассматривались «локально». Подразумевалось, что инженер или физик примет во внимание лишь один набор параметров, передающих движение в данный момент времени. Смэйл, как и Пуанкаре, стремился исследовать явления в глобальном масштабе, желая постигнуть все богатство возможностей сразу.

Любая совокупность уравнений, описывающих динамическую систему (в частности, уравнения Лоренца), позволяет установить определенные начальные параметры. В случае с тепловой конвекцией, например, один из заданных параметров характеризует вязкость жидкости. Значительные изменения исходных данных могут повлечь за собой ощутимые перемены в системе, скажем, расхождение между пребыванием системы в стабильном состоянии и ее периодическими колебаниями. Однако физики предположили, что слабые изменения способны вызвать лишь незначительное расхождение в числовых данных, но никак не в качественном поведении системы.

Увязав топологию и динамические системы, ученые получили бы возможность использовать некую форму для наглядного представления всего разнообразия моделей поведения систем. Если система сравнительно проста, эта форма очертаниями может напоминать изогнутую поверхность. Сложные системы обладают множеством измерений. Точка на поверхности описывает состояние системы в определенный момент времени. По мере развития системы во времени точка передвигается через всю поверхность, описывая на ней своеобразную траекторию. Легкий изгиб формы соответствует изменению параметров системы, повышению вязкости жидкости или небольшому увеличению движущей силы маятника. Приблизительно одинаковые формы свидетельствуют о приблизительно одинаковом поведении. Если форма доступна зрительному представлению, систему можно решить.

Когда Смэйл обратился к динамическим системам, топологией, как и вообще математикой, занимались люди, относившиеся с пренебрежением к прикладному применению математических знаний. Физика и топология — дисциплины, родственные по происхождению. Однако математики начисто забыли об этом, изучая очертания фигур ради них самих. Смэйл, будучи до мозга костей математиком, разделял общее заблуждение, полагая, впрочем, что кое-что в топологии может обогатить и физику. Того же мнения держался в начале XX века Пуанкаре.

Так случилось, что первый шаг в новой области Смэйл сделал в неверном направлении. Он предложил закон, гласивший примерно следующее: система может вести себя беспорядочно, но подобное поведение не является устойчивым.Устойчивость — «устойчивость по Смэйлу», как иногда называли ее математики, — представляла собой решающее свойство. Устойчивым именовалось такое поведение системы, которое не могло измениться только в силу крохотной флуктуации одного из численных параметров. Любая система обнаруживает как упорядоченное, так и хаотичное поведение. Уравнения, которые описывают стоящий вертикально на острие грифеля карандаш, математически весьма удачно решаются, если центр тяжести карандаша располагается прямо над точкой опоры. Однако поставить карандаш в такое положение нельзя, поскольку оно нестабильно, — едва заметные колебания выводят систему из равновесия. С другой же стороны, шарик, лежащий в лунке, там и останется. Даже если его слегка потревожить, шар вернется в прежнюю позицию. Согласно гипотезе Смэйла, любое поведение системы, фактически доступное регулярному наблюдению, должно являться устойчивым, так как небольшие помехи и изменчивость в реальных системах неизбежны, а мы никогда не знаем точных параметров. Если вам необходима модель, физически реальная и одновременно противостоящая незначительным изменениям, то такая модель, по мнению большинства физиков, определенно является устойчивой.

Зима 1959 г. принесла Смэйлу, находившемуся тогда в Рио-де-Жанейро, плохие новости. Вскоре после Рождества в дом, где он обитал с женой и двумя малышами, принесли письмо от коллеги. Высказанная Смэйлом догадка пролила свет на целую группу устойчивых дифференциальных уравнений, но не более того. С точки зрения Смэйла, к любой хаотичной системе можно было приближаться сколь угодно близко, используя выделенный им класс уравнений, но в этом он ошибался. В письме его коллега сообщал, что многие системы вовсе не так понятны, как представлялось Смэйлу. В доказательство автор письма приводил систему, где сосуществовали хаос и устойчивость. И эта система была вполне «крепкой»! Слегка потревожив ее, можно было заметить, как появляются непрогнозируемые черты, а ведь в реальности в любую природную систему вторгается посторонний шум. Устойчивая, но поражающая своей необычностью… Смэйл с недоверием вчитывался в строки письма, однако через некоторое время убедился в правоте коллеги.

Хаос и неустойчивость — понятия, смысл которых еще не отлился в чеканные формулировки, — вовсе не синонимы. Хаотичная система вполне может демонстрировать устойчивость, если определенное ее иррегулярное качество продолжает существовать вопреки незначительным помехам, о чем наглядно свидетельствовала система Лоренца (Смэйл и услышит о ней лишь годы спустя). Открытый Лоренцем хаос при всей своей непредсказуемости являлся столь же устойчивым, как шарик в лунке. Можно добавить шум в эту систему, покачать, хорошенько разболтать ее, помешать движению внутри нее — все равно, когда возмущение уляжется и мимолетные факторы исчезнут, словно замирающее эхо в глубоком каньоне, система вновь вернется к своему прежнему беспорядочному состоянию. Локально она непредсказуема, глобально — устойчива. Реальные же динамические системы вели себя, повинуясь куда более сложному набору правил, чем можно вообразить. Пример, который содержался в адресованном Смэйлу послании, являл собой другую простую систему, открытую более тридцати лет назад, но незаслуженно забытую. Эта система — колеблющаяся электрическая цепь, по сути своей маятник, нелинейный и подвергаемый, подобно качелям, периодическому воздействию силы.

Если быть еще более точным, речь шла о вакуумной лампе, сконструированной в 20-е годы голландским инженером-электронщиком Балтазаром ван дер Полем. Современный студент-физик легко разберется в поведении такого осциллятора, взглянув на экран осциллографа, но ван дер Поль, за неимением последнего, был вынужден изучать собственное изобретение, прислушиваясь к изменениям тональности звука в телефонных наушниках. Из раза в раз изменяя силу подаваемого электротока, он, к своему удовольствию, обнаружил в поведении системы некий порядок: будто взбегая по лестнице, тон «перепрыгивал» от частоты к частоте. Но однажды голландец заметил кое-что очень странное: звуки в наушниках стали иррегулярными. Изобретатель затруднялся объяснить, что происходит в лампе. Впрочем, это его не слишком беспокоило. «Порой посторонние шумы, которые мы слышим в телефонных наушниках, сигнализируют о резком переходе к более низкой частоте, — отмечал он в письме в журнал „Нейчур“. — Они носят вспомогательный характер». Ван дер Поль входил в число ученых, имевших представление о хаосе, пусть и смутное, однако он не смог бы облечь свои идеи в форму специальных терминов. Создатели вакуумных ламп считали блокирование частоты делом весьма важным. Для людей же, пытавшихся проникнуть в природу сложного, гораздо интереснее был «посторонний шум», исходивший от взаимодействия токов высокой и низкой частот.

12
{"b":"149202","o":1}