В дальнейшем обстоятельства сложились так, что нашему институту была поручена разработка проектов командно-измерительных комплексов (КИК): полигонного КИК в районе старта ракеты, КИК в районе падения боевых частей, КИК для обеспечения пусков ИСЗ и космических аппаратов различного назначения, корабельного КИК. Для выполнения этих работ потребовалась разработка новых методов, которые пополнили методологию космической баллистики. В части баллистического обеспечения управления полетом КА при подготовке каждого пуска основная нагрузка ложилась на наш институт, так как он исполнял роль головного центра по баллистическому обеспечению пуска.
А. В. Брыков — лауреат Ленинской премии, доктор технических наук, профессор, ведущий научный сотрудник 4-го Центрального научно-исследовательского института Министерства обороны Российской Федерации.
Существует ли математическая модель солнечной системы, позволяющая в любой момент времени знать местоположение и параметры движения всех ее тел?
Параметры движения планет и большого числа астероидов Солнечной системы хорошо известны. Космические баллистики пользуются этими астрономическими данными, однако в расчет, конечно, принимается лишь движение тел, существенно влияющих на полет космического аппарата. Чем более сложной и «многозаходной» является программа полета станции, тем больше влияющих факторов учитывается.
Математическая модель солнечной системы?.. Похоже, мы никогда ею не пользовались, если даже она существует. Зато имеются многочисленные программы-визуализаторы астрономической обстановки, например Planet’s orbits 1.41 [На www.astrogalaxy.ru/095.html есть эта программа и много похожих] — бесплатная программа для домашнего компьютера, позволяющая промоделировать и, главное, увидеть «со стороны» орбиты и текущее положение на них всех планет солнечной системы, и большинства известных астероидов. Это, конечно же, не профессиональный инструмент, хотя позволяет получить множество числовых параметров. Но очень забавный…
В последние несколько месяцев средства массовой информации все чаще трубят об угрозе Земле со стороны астероидов. Понятно, что самыми компетентными экспертами в этом вопросе могут быть не столько астрономы, сколько космические баллистики. Можем ли мы расчетным путем определить моменты критической близости траекторий Земли и известных нам астероидов? Что мы знаем об их движении в Солнечной системе? Готовы ли мы оперативно рассчитывать полетные задания для ракет-перехватчиков, если это понадобится? И вообще, насколько серьезна эта угроза?
ТЕОРИЯ
Элементы орбиты представляются в виде рядов по степеням времени. Применяемые варианты теорий позволяют изучать возмущенное движение больших планет Солнечной системы на интервале времени в десятки тысяч лет (50 тысяч лет для планет от Меркурия до Нептуна; 10 тысяч лет для Плутона).
Если говорить о траекториях известных астероидов, конечно, можно рассчитать моменты опасного сближения, но что понимать под этим? Опасность представляет, по сути дела, прямое попадание… Чрезвычайно маловероятное событие. А если допустить, что не все малые объекты солнечной системы нами обнаружены, то становится ясно, что дело не в баллистике, а в астрономии.
Готовы ли мы рассчитать полетное задание? — Лишь при условии, что нам известны параметры движения опасного небесного тела. Исследование его траектории — дело не одного дня. Вопрос в том отрезке времени, которым мы будем располагать для подготовки носителя, вывода «перехватчика» в межпланетное пространство, перелета в точку перехвата… Собственно, и «перехватчика»-то у нас нет даже в проекте… А ведь это довольно сложный космический аппарат. Короче говоря, все возможно, если о предполагаемом столкновении с Землей мы будем знать где-то за год-полтора, а то и раньше. Много вопросов вызывает и сама «технология» перехвата. Предлагают взорвать на поверхности астероида ядерный заряд, дабы таким образом «скорректировать» его траекторию… С учетом масс космических тел даже ядерный взрыв на поверхности не сможет сильно повлиять на их движение, если астероид окажется уже «рядом». Насколько серьезна эта угроза? Думаем, гораздо менее серьезна, чем любая из наших внутренних — социальных, политических или экологических.
Известно, что любая наука движется вперед поставленными, но пока не решенными задачами. Какие научные задачи ставят перед собой космические баллистики?
Так хотелось бы, чтобы все баллистические задачи решались автоматически на борту космического аппарата… А если серьезно, то вскоре — через год — предстоит решить невероятно красивую задачу — добыть образцы грунта с Фобоса (спутник Марса) и доставить их на Землю в ходе выполнения программы «Фобос-грунт» Российской Академии наук и Федерального космического агентства. Запуск планируется с космодрома Байконур в октябре 2009 года. Попробуем кратко рассказать об этом проекте, рассматривая в основном задачи, которые встанут перед космическими баллистиками ИПМ им. М. В. Келдыша (головная организация по разработке баллистической схемы и сопровождению этого эксперимента (www.kiam1.rssi.ru/PHOBOS).
Итак, первый этап — запуск космического аппарата, вывод его на околоземную промежуточную орбиту с последующей перестройкой этой орбиты для выведения аппарата на траекторию к Марсу. Перелет Земля-Марс займет примерно одиннадцать месяцев.
Следующий этап — формирование орбиты космического аппарата для сближения с Фобосом. Этот этап планируется выполнить с помощью так называемой трехимпульсной схемы торможения: первый импульс торможения при подлете по параболической траектории к Марсу выводит космический аппарат на промежуточную эллиптическую орбиту вокруг Марса с периодом обращения около трех суток. Второй импульс увеличит перицентр орбиты до высоты орбиты Фобоса. Третий импульс в перицентре сформирует круговую орбиту с радиусом приблизительно на 500 км выше орбиты Фобоса и лежащую в ее плоскости. Работа на этой «орбите наблюдения» необходима для проведения точных измерений взаимного движения исследовательского аппарата и Фобоса. Затем следует этап перехода на еще более близкую к Фобосу «квазисинхронную» орбиту. Двигаясь по такой орбите, космический аппарат будет постоянно находиться вблизи Фобоса на расстоянии около 50 км. Затем — автоматическая посадка… Ближайшее после прилета к Марсу стартовое «окно» для возврата на Землю приходится на август 2011 года. И снова — трехимпульсная схема, но теперь уже — схема разгона для выведения аппарата на траекторию, ведущую домой.
«Мозговой штурм» Луны
Один из принципов, на которых базировалось конструирование Е-6 (аппарат для осуществления мягкой посадки на Луну), состоял в обеспечении «вертикального» прилунения аппарата. В этом случае траектория полета к Луне в идеале должна была совпадать с вертикалью к местному горизонту в точке посадки аппарата на поверхность Луны. Тогда при торможении аппарата перед посадкой полностью бы отсутствовала боковая составляющая скорости и обеспечивалась надежная посадка.
Однако в действительности реализованная орбита будет представлять собой лишь одну из «пучка» возможных, обусловленного наличием ряда объективно существующих погрешностей, возникающих при старте с промежуточной орбиты и при реализации коррекции движения в полете. Так вот, анализ, проведенный в процессе проектирования, показал, что в «пучке» возможных траекторий очень велика вероятность реализации такой траектории, у которой боковая составляющая скорости торможения будет гораздо больше допустимой и надежности посадки автоматической лунной станции говорить не придется. Выход из создавшегося положения искали как конструкторы (за счет создания новых устройств для погашения боковой скорости), так и баллистики (изыскание путей уменьшения размеров «пучка» орбит). При этом требовалось найти решения при очень и очень ограниченных возможностях увеличения веса аппарата. У баллистиков был ясный и реалистичный путь решения проблемы: «уменьшить» размеры «пучка» за счет перенесения коррекции движения КА на более позднее время. Тогда, вследствие уменьшения влияния ошибок исполнения «корректирующего импульса» на рассеивание точек прилунения, проблема была бы решена. Однако расчеты показали, что потребное увеличение импульса коррекции, а следовательно, и запаса топлива приведет к недопустимому увеличению веса аппарата.