Литмир - Электронная Библиотека
A
A

В действительности, количество покидающего альвеолы О<sub>2</sub> превышает количество поступающего в альвеолы СО<sub>2</sub> за минуту:

R = (200 мл CO<sub>2</sub>/мин) / (250 мл O<sub>2</sub>/мин) = 0,8.

При дыхательном коэффициенте, равном 0,8, молекулы N<sub>2</sub> занимают меньший объем. Если концентрация N<sub>2</sub> в альвеолах увеличится до 81%, то альвеолярное парциальное напряжение N<sub>2</sub> увеличивается до 577 мм рт.ст. и альвеолярное парциальное напряжение О<sub>2 </sub>снижается до 96 мм рт.ст.. Поэтому важно измерить R для того, чтобы точно рассчитать альвеолярное парциальное напряжение N<sub>2</sub>. Предполагая, что парциальное напряжение СО<sub>2</sub> во вдыхаемом воздухе равно нулю, уравнение альвеолярного газа выглядит следующим образом:

P<sub>A</sub>O<sub>2</sub> = (P<sub>I</sub>O<sub>2 </sub> - P<sub>A</sub>CO<sub>2</sub>) x (F<sub>I</sub>O<sub>2</sub> + 1 - F<sub>I</sub>O<sub>2</sub>/R),

где: P<sub>I</sub>O<sub>2</sub> на уровне моря равно 20,93% (760 - 47=149 мм рт.ст.), P<sub>A</sub>CO<sub>2</sub> предполагается равным артериальному парциальному напряжению CO<sub>2</sub>, которое может быть измерено достаточно точно:

P<sub>A</sub>O<sub>2</sub> = P<sub>I</sub>O<sub>2 </sub> - P<sub>a</sub>CO<sub>2</sub>/R.

Альвеолярно-артериальная разница РО<sub>2</sub> ((А-а)РО<sub>2</sub>) увеличивается с возрастом пациентов. K. Mellemgaard [121] выполнил исследование 80 здоровых людей от 15 до 75 лет и получил регрессионную формулу для расчета (А-а)РО<sub>2</sub>:

(А-а)РО<sub>2</sub> = 2,5 + 0,21 x возраст (г.).

Увеличение (А-а)РО<sub>2</sub> в основном связано со снижением артериального РО<sub>2</sub>, альвеолярное РО<sub>2</sub> значимо не меняется с возрастом.

Расчет альвеолярной вентиляции

V<sub>A</sub>(мл) = VCO<sub>2</sub>(мл) x 863 / P<sub>A</sub>CO<sub>2</sub>.

Отношение альвеолярной вентиляции к легочному кровотоку

V<sub>A</sub>/Qc<sub> </sub>= 836 x (CvCO<sub>2 </sub> - Cc’CO<sub>2</sub>) / P<sub>A</sub>CO<sub>2</sub>,

где: Qc - кровоток в легочных капиллярах, CvCO<sub>2</sub> - концентрация СО<sub>2</sub> в смешанной венозной крови, Cc’CO<sub>2</sub> - концентрация СО<sub>2</sub> в крови конечно-легочных капилляров, V<sub>A</sub> - альвеолярная вентиляция, P<sub>A</sub>CO<sub>2</sub> - парциальное напряжение СО<sub>2</sub> в альвеолярном пространстве, 863 - постоянная для коррекции изменения альвеолярной фракции в альвеолярное напряжение СО<sub>2</sub>.

Парциальное напряжение СО<sub>2</sub> в крови конечно-легочных капилляров такое же, как и в альвеолярном газе. Поэтому альвеолярное парциальное напряжение СО<sub>2</sub> определяется отношением вентиляции к перфузии.

West разработал комплексный компьютерный анализ, который рассматривает легкие как 10-компонентную систему [122]. По мере того как вентиляционно-перфузионный дисбаланс увеличивается, парциальное напряжение О<sub>2</sub> в артериальной крови снижается быстро и прогрессивно, парциальное напряжение СО<sub>2</sub> увеличивается вначале постепенно, а затем достаточно быстро. Таким образом, в отличие от классического учения, нарушение вентиляционно-перфузионных отношений может вызывать значительную гиперкапнию у больных с легочными заболеваниями, особенно когда заболевание столь тяжело, что гипервентиляция хорошо вентилируемых регионов легких больше не в состоянии компенсировать регионы, в которых парциальное напряжение О<sub>2</sub> снижено [123].

РАСЧЕТ ВЕНОАРТЕРИАЛЬНОГО ШУНТА

При наличии веноартериального шунта, артериальная кровь содержит некоторое количество смешанной венозной крови. Уравнение, которое описывает примешивание смешанной венозной крови к артериальной крови, аналогично уравнению Бора для расчета респираторного мертвого пространства:

Qs = Q x (Cc’O<sub>2</sub> - CaO<sub>2</sub>) / (Cc’O<sub>2</sub> - CvO<sub>2</sub>),

где: Qs - поток шунтируемой крови,

Cc’O<sub>2</sub> - содержание O<sub>2</sub> в крови конечно-легочных капилляров,

CaO<sub>2</sub> - содержание O<sub>2</sub> в артериальной крови,

CvO<sub>2</sub> - содержание O<sub>2</sub> в смешанной венозной крови,

Q - общий объем кровотока.

Поскольку пробы артериальной и смешанной венозной крови могут быть получены и проанализированы, то CaO<sub>2</sub> и CvO<sub>2</sub> могут быть рассчитаны. Количество крови, протекающей через шунт, может быть определено у пациентов, вдыхающих чистый кислород в течение времени, достаточного для вымывания всего N<sub>2</sub> из альвеол. Альвеолярное парциальное напряжение О<sub>2</sub> в этих условиях приблизительно составляет 673 мм рт.ст. (760 - альвеолярное РH<sub>2</sub>O - альвеолярное РСО<sub>2</sub>). В этих условиях не существует различия между альвеолами и конечным отделом легочных капилляров. Можно предположить, что кровь в конечном отделе легочных капилляров содержит кислород в количестве, равном кислородной емкости гемоглобина плюс 2,0 мл растворенного кислорода на 100 мл крови. Нормальный объем крови, протекающий через анатомический шунт (2% от сердечного выброса), приводит к снижению содержания кислорода на 0,1 мл кислорода на 100 мл крови и к снижению парциального напряжения О<sub>2</sub> на 35 мм рт. ст. от уровня теоретически максимально возможного уровня парциального артериального напряжения О<sub>2</sub> при вдыхании чистого кислорода.

«Венозная примесь» или «физиологический шунт» могут быть оценены методом, разработанным J.L. Lilienthal и соавт. [124]. «Шунт» означает снижение вентиляционно-перфузионных отношений и включает перфузируемые альвеолы без вентиляции; гиповентилируемые альвеолы с нормальной, увеличенной или слегка сниженной перфузией; и вентилируемые альвеолы со значительно увеличенной перфузией. С этой точки зрения, исследователь делает предположение о наличии 2 отделов: с полным шунтом и без шунта [125].

Если пациент вдыхает чистый кислород, то это позволяет отличить шунт справа налево от нарушения вентиляционно-перфузионных отношений. Ожидаемые парциальные напряжения О<sub>2</sub> в альвеолярном газе и артериальной крови в «идеальном легком», при вентиляционно-перфузионном дисбалансе и при наличии шунта представлены в табл. 5-3.

Таблица 5-3. Влияние вдыхания 21 и 100% кислорода на среднее парциальное напряжение кислорода в альвеолярном газе, артериальной и смешанной венозной крови в легких с «идеальным» газообменом, при вентиляционноперфузионном дисбалансе, при наличии шунта справа налево

Параметры

Идеальный газообмен

Вентиляционно-перфузионный дисбаланс

Шунт справа-налево

21%

100%

21%

100%

21%

100%

160
{"b":"145843","o":1}