Литмир - Электронная Библиотека
Содержание  
A
A

Это напоминает другой интересный тип автореференции, получаемый при помощи ксерокса. Можно сказать, что всякий письменный документ является авто-репом, потому что он может быть воспроизведен путем ксерокопирования. Однако это в некотором смысле противоречит нашему понятию о самовоспроизводстве лист бумаги в данном случае совершенно пассивен и не управляет собственным воспроизводством. В этом случае, все опять зависит от процессора. Прежде, чем мы сможем назвать некий объект авто-репом, мы должны быть уверены в том, что в этом объекте содержатся максимально ясные инструкции по его самовоспроизводству.

Разумеется, ясность и подробность указаний всегда относительны, однако существует некая интуитивная граница, по одну сторону которой мы видим настоящее самовоспроизводство, а по другую — копирование при помощи негибкого и автономного копирующего механизма.

Что такое копия?

В любом обсуждении вопросов, касающихся авто-репа и авто-рефа, нам рано или поздно придется дать определение понятию копии. Мы уже обсуждали этот вопрос в главах V и VI; теперь мы вернемся к нему еще раз. Для начала рассмотрим довольно фантастические, но теоретически возможные примеры авто-репов.

Самовоспроизводящаяся песня

Представьте себе музыкальный автомат в местном баре; вы нажимаете на кнопку 1-Я, и раздается песня на мотив «Славного моря» с такими словами:

Все, что мне нужно — монетка твоя,

Славная скрасит нам песенка ночку.

Денежку сунь и нажми «1-Я» —

Петь я не буду в рассрочку.

Мы можем нарисовать маленькую диаграмму того, что при этом получается:

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - i_106.png

Рис. 86. Самовоспроизводящаяся песня.

Хотя в результате песня воспроизводится, было бы странно называть ее настоящим авто-репом, поскольку, когда она проходит через стадию 1-Я, в ней находится не вся информация. Информация может быть восстановлена только благодаря тому, что она полностью записана в музыкальном автомате — то есть в стрелках нашей диаграммы, а не в ее овалах. Неясно, содержит ли эта песня полные инструкции, необходимые для ее воспроизводства, поскольку символ 1-Я — не копия, а всего лишь пусковой механизм.

Крабо-программа

Теперь представьте себе компьютерную программу, печатающую саму себя задом наперед. (Читатели могут для интереса попытаться написать такую программу на языке, подобном Блупу, используя данный авто-реп в качестве модели.) Была бы подобная забавная программа авто-репом? В каком-то смысле да, так как тривиальное преобразование ее выхода восстановило бы первоначальную программу. Видимо, можно сказать, что выход содержит ту же информацию, что и сама программа, только слегка измененную. Но ясно и то, что в таком выходе многие не узнали бы изначальной программы, напечатанной задом наперед. Используя терминологию главы VI, мы могли бы сказать, что «внутреннее сообщение» выхода и программы совпадают, в то время как их «внешние сообщения» различны — то есть для их прочтения требуются разные декодирующие механизмы. Если считать внешнее сообщение частью информации (что кажется вполне разумным), то общая информация, в конце концов, оказывается не одна и та же, так что эту программу нельзя считать настоящим авто-репом.

Это заключение звучит тревожно, поскольку мы привыкли считать, что предмет и его зеркальное отражение содержат одну и ту же информацию. Но вспомните, что в главе VI мы выяснили, что понятие «присущего сообщению значения» зависит от гипотетического универсального понятия разума. Идея заключалась в том, что при определении этого присущего значения мы можем игнорировать некоторые типы внешних сообщений — те, которые понятны везде и всем. Если декодирующий механизм кажется достаточно фундаментальным (эта фундаментальность пока определена довольно расплывчато), то важно лишь внутреннее сообщение, которое он выявляет. В этом примере кажется разумным предположить, что «стандартный разум» считал бы, что предмет и его отражение содержат одну и ту же информацию. Иными словами, он нашел бы изоморфизм между ними настолько тривиальным, что его вообще можно было бы не принимать в расчет. Таким образом, наше интуитивное восприятие этой программы как настоящего авто-репа оказывается вполне оправдано.

Эпименид, оседлавший Ламанш

  Еще одним забавным примером авто-репа была бы программа, печатающая саму себя в переводе на другой компьютерный язык. Это можно сравнить со следующей франко-английской версией Квайнова варианта авто-репа Эпименида:

«est une expression qui, quand elle est précédée de sa traduction, mise entre guillemets, dans la langue provenant de l'autre côoté de la Manche, crée une fausseté» is an expression which, when it is preceded by its translation, placed in quotation marks, into the language originating on the other side of the Channel, yields a falsehood.

(«Это высказывание, которое, будучи предварено своим переводом, заключенным в кавычки, на язык другой стороны Ламанша, порождает ложь» — это высказывание, которое, будучи предварено своим переводом, заключенным в кавычки, на язык другой стороны Ламанша, порождает ложь.)

Можете попытаться записать предложение, описанное этой странной конструкцией (подсказка: оно не является самим собой — по крайней мере, если понимать слово «само» упрощенно). Если понятие «авто-реп, полученный отступлением назад» напоминает крабий канон, или ракоход, понятие «авто-реп, полученный переводом» напоминает канон, в котором тема переводится в другую тональность.

Программа, печатающая свой собственный Гёделев номер

Может показаться, что не имеет смысла печатать перевод программы вместо ее точной копии. Однако, чтобы написать авто-реп на Блупе или Флупе, вам пришлось бы прибегнуть к подобным трюкам, поскольку на этих языках ВЫХОД всегда бывает в форме чисел, а не типографских строчек. Таким образом, вам пришлось бы написать программу, которая печатала бы свой собственный Гёделев номер: гигантское число, использующее трехзначные кодоны — «переводы» каждого знака программы. Такая программа, используя доступные ей средства, подходит очень близко к самовоспроизведению: она печатает копию себя самой в другом «измерении». Перейти от измерения чисел к измерению строчек не представляет труда. Таким образом, ВЫХОД здесь является не только пусковым механизмом, каким была кнопка 1-Я. Вместо этого, все информация первоначальной программы лежит «близко к поверхности» выхода.

Гёделева автореференция

Мы подошли вплотную к описанию Гёделева авто-рефа G. В конце концов, эта строчка ТТЧ содержит описание не себя самой, а некоего числа (арифмоквайнификации d). Однако дело в том, что это число — точный «портрет» строчки G в измерении натуральных чисел. Таким образом, G описывает собственный перевод на другой «язык». Тем не менее, мы с чистой совестью называем G автореферентной строчкой, поскольку изоморфизм между двумя «языками» настолько совершенен, что их можно считать идентичными.

Изоморфизм, отображающий ТТЧ на абстрактный мир натуральных чисел, сравним с квази-изоморфизмом, отображающим реальный мир в нашем мозгу при помощи символов. Это символы почти изоморфны предметам, которые они отображают, и именно благодаря этому мы можем думать. Таким же образом, Гёделевы номера изоморфны строчкам, благодаря чему мы можем найти метаматематический смысл в высказываниях о натуральных числах. Удивительное, почти магическое свойство G заключается в том, что ей удается автореференция, несмотря на то, что она написана на языке ТТЧ, который, как кажется, совершенно непригоден для самоописания (чем весьма отличается от русского языка, на котором запросто можно обсуждать русский язык).

Таким образом, G — замечательный пример авто-рефа, полученного путем перевода. Далеко не самый прямой путь! Мы можем найти подобные примеры в Диалогах, так как некоторые из них являются такими переводными авто-рефами. Возьмите, например, «Сонату для Ахилла соло». В этом Диалоге несколько раз упоминаются сонаты Баха для скрипки соло; особенно интересен момент, когда Черепаха предлагает Ахиллу вообразить аккомпанемент на клавесине. Если приложить эту идею к самому Диалогу, то нам придется изобретать реплики Черепахи; но если считать, что Ахилл, как Баховская скрипка, исполняет соло, то было бы в принципе неверно считать, что Черепаха играет какую-то ни было роль в беседе. Так или иначе, здесь мы опять сталкиваемся с авто-рефом, на этот раз полученным путем отображения Диалогов на пьесы Баха. Задача читателя в том, чтобы это отображение обнаружить. Но даже если читатель его и не заметит, отображение там тем не менее присутствует, и Диалог все-таки является авто-рефом.

156
{"b":"138924","o":1}