Литмир - Электронная Библиотека
Содержание  
A
A

Но согласно господствующим теперь в физике и химии взглядам, земные массы, тела, с которыми имеет дело механика, состоят из молекул, из мельчайших частиц, которые нельзя делить дальше, не уничтожая физического и химического тождества рассматриваемого тела.

Согласно вычислениям У. Томсона, диаметр наименьшей из этих молекул не может быть меньше одной пятидесятимиллионной доли миллиметра[464]. Но даже если мы допустим, что наибольшая молекула достигает диаметра в одну двадцатипятимиллионную долю миллиметра, то и в этом случае молекула все еще остается исчезающе малой величиной по сравнению с наименьшей массой, с какой только имеют дело механика, физика и даже химия. Несмотря на это, молекула обладает всеми характерными для соответствующей массы свойствами; она может представлять в физическом и химическом отношении эту массу и, действительно, представляет ее во всех химических уравнениях. Короче говоря, молекула обладает по отношению к соответствующей массе совершенно такими же свойствами, какими обладает математический дифференциал по отношению к своей переменной, с той лишь разницей, что то, что в случае дифференциала, в математической абстракции, представляется нам таинственным и непонятным, здесь становится само собой разумеющимся и, так сказать, очевидным.

Природа оперирует этими дифференциалами, молекулами, точно таким же образом и по точно таким же законам, как математика оперирует своими абстрактными дифференциалами. Так, например, дифференциал от X будет 3x2dx, причем мы пренебрегаем 3xdx2 и dx3. Если мы сделаем соответствующее геометрическое построение, то получим куб, длина стороны которого х увеличивается на бесконечно малую величину dx. Допустим, что этот куб состоит из какого-нибудь легко возгоняемого химического элемента, скажем, из серы; допустим, что поверхности трех из его граней, образующих один угол, защищены, а поверхности трех других граней свободны. Если мы поместим этот серный куб в атмосферу из паров серы и в достаточной степени понизим температуру этой атмосферы, то пары серы начнут осаждаться на трех свободных гранях нашего куба. Мы не выйдем за пределы обычных для физики и химии приемов, если, желая представить себе этот процесс в чистом виде, мы допустим, что на каждой из этих трех граней осаждается сперва слой толщиной в одну молекулу. Длина стороны куба х увеличилась на диаметр одной молекулы, на dx. Объем же куба х3 увеличился на разность между х3 и х3 + 3x2dx + 3xdx2 + dx3, причем мы с тем же правом, как и математика, можем пренебречь dx3, т. е. одной молекулой, и 3xdx2, т. е. тремя рядами, длиной в х + dx, линейно расположенных молекул. Результат одинаков: приращение массы куба равно 3x2dx.

Строго говоря, у серного куба не бывает dx3 и 3xdx2, ибо две или три молекулы не могут находиться в одном и том же месте пространства, и прирост его массы поэтому точно равен 3x2dx + 3xdx + dx. Это объясняется тем, что в математике dx есть линейная величина, но таких линий, не имеющих толщины и ширины, в природе самостоятельно, как известно, не существует, и, следовательно, математические абстракции имеют безусловную значимость только в пределах чистой математики, А так как и эта последняя пренебрегает 3xdx2 + dx3, то здесь не получается никакой разницы.

Точно так же обстоит дело и при испарении. Когда в стакане воды испаряется верхний слой молекул, то высота всего слоя воды х уменьшается на dx, и дальнейшее улетучивание одного слоя молекул за другим фактически есть продолжающееся дальше дифференцирование. А когда под влиянием давления и охлаждения горячий пар в каком-нибудь сосуде снова сгущается, превращаясь в воду, и один слой молекул отлагается на другом (причем мы вправе отвлечься от усложняющих процесс побочных обстоятельств), пока сосуд не заполнится доверху, то перед нами здесь имеет место в буквальном смысле интегрирование, отличающееся от математического интегрирования лишь тем, что одно совершается сознательно человеческой головой, а другое бессознательно природой.

Но процессы, совершенно аналогичные процессам исчисления бесконечно малых, имеют место не только при переходе из жидкого состояния в газообразное и наоборот. Когда движение массы как таковое прекратилось в результате толчка и превратилось в теплоту, в молекулярное движение, то что же произошло, как не дифференцирование движения массы? А когда молекулярные движения пара в цилиндре паровой машины суммируются в том направлении, что они на определенную высоту поднимают поршень, превращаясь в движение массы, то разве они здесь не интегрируются? Химия разлагает молекулы на атомы, величины, имеющие меньшую массу и протяженность, но представляющие собой величины того же порядка, что и первые, так что молекулы и атомы находятся в определенных, конечных отношениях друг к другу. Следовательно, все химические уравнения, выражающие молекулярный состав тел, представляют собой по форме дифференциальные уравнения. Но в действительности они уже интегрированы благодаря фигурирующим: в них атомным весам. Химия оперирует такими дифференциалами, взаимоотношение величин которых известно.

Но атомы отнюдь не являются чем-то простым, не являются вообще мельчайшими известными нам частицами вещества. Не говоря уже о самой химии, которая все больше и больше склоняется к мнению, что атомы обладают сложным составом, большинство физиков утверждает, что мировой эфир, являющийся носителем светового и теплового излучения, состоит тоже из дискретных частиц, столь малых, однако, что они относятся к химическим атомам и физическим молекулам так, как эти последние к механическим массам, т. е. относятся как d2x к dx. Здесь, таким образом, в принятых в настоящее время представлениях о строении материи мы имеем перед собой также и дифференциал второго порядка, и ничто не мешает каждому, кому это доставляет удовольствие, предположить, что в природе должны быть еще также и аналоги для с?х, dtx и т. д.

Итак, какого бы взгляда ни придерживаться относительно строения материи, не подлежит сомнению то, что она расчленена на ряд больших, хорошо отграниченных групп с относительно различными размерами масс, так что члены каждой отдельной группы находятся со стороны своей массы в определенных, конечных отношениях друг к другу, а к членам ближайших к ним групп относятся как к бесконечно большим или бесконечно малым величинам в смысле математики. Видимая нами звездная система, солнечная система, земные массы, молекулы и атомы, наконец, частицы эфира образуют каждая подобную группу. Дело не меняется от того, что мы находим промежуточные звенья между отдельными группами: так, например, между массами солнечной системы и земными массами мы встречаем астероиды, — из которых некоторые имеют не больший диаметр, чем, скажем, княжество Рейс младшей линии[465], — метеориты и т. д.; так, между земными массами и молекулами мы встречаем в органическом мире клетку. Эти промежуточные звенья доказывают только, что в природе нет скачков именно потому, что она слагается сплошь из скачков.

Когда математика оперирует действительными величинами, она тоже без дальних околичностей применяет это воззрение. Для земной механики уже масса Земли является бесконечно большой; в астрономии земные массы и соответствующие им метеориты выступают как бесконечно малые; точно таким же образом исчезают для нее расстояния и массы планет солнечной системы, лишь только астрономия, выйдя за пределы ближайших неподвижных звезд, начинает изучать строение нашей звездной системы. Но как только математики укроются в свою неприступную твердыню абстракции, так называемую чистую математику, все эти аналогии забываются; бесконечное становится чем-то совершенно таинственным, и тот способ, каким с ним оперируют в анализе, начинает казаться чем-то совершенно непонятным, противоречащим всякому опыту и всякому смыслу. Те глупости и нелепости, которыми математики не столько объясняли, сколько извиняли этот свой метод, приводящий странным образом всегда к правильным результатам, превосходят самое худшее, действительное и мнимое, фантазерство натурфилософии (например, гегелевской), по адресу которого математики и естествоиспытатели не могут найти достаточных слов для выражения своего ужаса. Они сами делают — притом в гораздо большем масштабе — то, в чем они упрекают Гегеля, а именно доводят абстракции до крайности. Они забывают, что вся так называемая чистая математика занимается абстракциями, что все ее величины суть, строго говоря, воображаемые величины и что все абстракции, доведенные до крайности, превращаются в бессмыслицу или в свою противоположность. Математическое бесконечное заимствовано из действительности, хотя и бессознательным образом, и поэтому оно может быть объяснено только из действительности, а не из самого себя, не из математической абстракции. А когда мы подвергаем действительность исследованию в этом направлении, то мы находим, как мы видели, также и те действительные отношения, из области которых заимствовано математическое отношение бесконечности, и даже наталкиваемся на имеющиеся в природе аналоги того математического приема, посредством которого это отношение проявляется в действии. И тем самым вопрос разъяснен.

вернуться

464

Эта цифра приводится в статье У. Томсона «Величина атомов», первоначально опубликованной в журнале «Nature» № 22 от 31 марта 1870 г., а затем перепечатанной в виде приложения во втором издании книги У. Томсона и П. Г. Тейта «Трактат о натуральной философии» (W. Thomson and P. G. Tait. «Treatise on Natural Philosophy». Vol. I, part II, new ed., Cambridge, 1883, p. 501—502).

вернуться

465

Рейс младшей линии — одно из карликовых немецких государств, с 1871 г. входило в состав Германской империи.

165
{"b":"134417","o":1}