Но какова же тогда была природа гена? До экспериментального решения этого вопроса оставалось еще долгих десять лет, а до признания всем научным сообществом — все двадцать. Переворот в мозгах ученых, ставивших телегу впереди лошади, проходил долго и мучительно.
Статья берлинской тройки привлекла внимание американца, австрийца и итальянца. Первый, директор Рокфеллеровского фонда У. Вивер, пригласил Дельбрюка в США, где физик-теоретик, слушавший, кстати, лекции Бора в Копенгагене, написал в 1940 году совместно с известным американским химиком Л. Полингом статью, касающуюся принципа комплементарности в биологии.
Австрийский физик-теоретик Э. Шредингер написал книгу «Что такое жизнь? С точки зрения физика», в которой целую главу посвятил статье тройки и обсуждению «апериодичности» строения хромосомы. Книжку читали американец Дж. Уотсон и англичанин Ф. Крик, которые поставили себе целью узнать, как устроен ген.
А в Риме статью прочитал С. Луриа, бежавший от фашистов в США к Дельбрюку. Вместе они стали работать с фагами — вирусами микроорганизмов.
Это было уже после войны, а в 1944 году О. Эйвери из Рокфеллеровского института в Нью-Йорке открыл, что у пневмококков, вызывающих пневмонию, или воспаление легких, генетическим веществом является дезоксирибонуклеиновая кислота (ДНК).
Первым и самым любимым аспирантом С. Луриа был Джеймс Уотсон, которого Луриа послал в Кембридж в знаменитую Лабораторию молекулярной биологии. Именно там Уотсон и встретился с Криком, с которым они в 1953 году представили ученому миру двуцепочную спиральную модель ДНК. Это был день рождения современной биологии! Что же из них себя представляет ДНК?
Это двуцепочная молекула, похожая на спиральную винтовую лестницу, ступеньками которой являются комплементарные пары азотистых оснований (соединений, имеющих в своем составе азот). Основания представляют собой «буквы» генетического кода. Таких букв всего 4: Аденин, Гуанин, тимин и цитозин. Последние два, вернее их названия, напечатаны с маленьких букв потому, что молекулы тимина и цитозина примерно в два раза меньше по своим размерам, чем Аденина и Гуанина. «Боковины» лестницы составлены молекулами сахара дезоксирибозы и остатка фосфорной кислоты НзР04, что можно видеть на схеме:
Сахар — Фосфат — Сахар — Фосфат — Сахар — Фосфат — Сахар — Фосфат
Сахар — Фосфат — Сахар — Фосфат — Сахар — Фосфат — Сахар — Фосфат
Из схемы видно, что в комплементарных парах Аденин всегда соединен с тимином, а Гуанин с цитозином. Замена того или иного основания — «буквы» приводит к нарушению комплементарности, что внешне проявляется в виде мутации: изменение окраски, нарушения функции белка, в результате чего может развиваться заболевание или даже наступить смерть. Уже говорилось, что в природе мутации носят случайный характер.
Но так ли уж «случайна» эта случайность? И как быть на молекулярном уровне со старым как мир спором о том, что было вначале — яйцо или курица?
На эти вопросы пытались еще в 1943 году ответить Дельбрюк и Луриа, которые установили, что в системе фаг — бактерия мутации случайны. Спустя почти полстолетия Дж. Кэйрнс из Гарвардского университета так писал об их результатах: «Доктрина, столь пылко защищаемая, есть негативное утверждение: внешний признак никогда не предшествует генам! Но как же проверить „полезность“ мутации до их закрепления в генах? Для организма не представляется трудной задача проверки признака до его закрепления в генах».
Вывод этот был сделан на основании экспериментов, проведенных Кэйрнсом с бактериями, которым, например, вместо привычного им черного хлеба стали давать белый или наоборот. Оказалось, что при такой смене бактерии вполне сознательно производят переключение генов, ответственных за усвоение нового источника питания. Получается, что в конкретных случаях мутации и не столь уж случайны. Случайно лишь то, в каких клетках они произойдут.
Главное — сохранение вида.
До сих пор мы говорили о мутациях на генном уровне. Но ген сам по себе в клетке не «работает». Ген можно сравнить лишь с магнитной лентой видео или аудиокасссты с записанной на ней изображением или музыкой. Но для «прокручивания» кассеты необходимы магнитофон и телевизор. Таким «прокручивающим» устройством в клетке является белок. И мутация в белке выражается в замене той или иной аминокислоты, или «кирпичика», из которого, как уже говорилось выше, строится молекула белка.
Одним из таких функциональных белков является альфа-кристаллин (аК) хрусталика глаза, то есть той «линзочки», с помощью которой фокусируется свет на сетчатке нашего органа зрения.
Известно, что животным, ведущим подземный образ жизни, глаза практически не нужны. Одним из таких животных является ближневосточный спаллакс — нечто среднее между подземной крысой и кротом. Вот уже 40 миллионов лет спаллакс живет под землей. Сегодня глаза у него даже не прорезаются!
Тем не менее хрусталик и сетчатка глаза образуются. Белки хрусталика настолько изменились за долгие годы подземной эволюции, что хрусталик не может менять свою кривизну и фокусировать луч света на сетчатке. Тем не менее, как показали лабораторные исследования, спаллакс способен реагировать на свет!
Так при зимнем освещении, то есть с коротким световым днем, он надевает роскошную пушистую шубу, хотя температура в комнате поддерживалась на уровне 22 °C. Если же продолжительность светового дня увеличивали до 16 часов, то он сбрасывал шубу, несмотря на снижение температуры до 17 °C.
Сравнение аминокислотных последовательностей белка аК спаллакса и его эволюционных родственников показало, что последовательность эта состоит из 173 аминокислот (как бусин в ожерелье). В аК спаллакса обнаружено 9 аминокислотных замен по сравнению с более эволюционно древними крысами, мышами и хомячками. Выяснилось, что скорость эволюционного изменения в «ненужном» белке спаллакса в четыре раза выше, чем в «работающем» белке.
Выяснилось также, что в аК спаллакса произошли замены даже в четырех стабильных, или консервативных, метах, которые неизменны у 72 видов позвоночных — от рыб до человека.
Получается, что когда белок функционирует, то об эволюции говорить вообще не приходится!
Приведем еще один последний пример отсутствия подобной эволюции.
Речь пойдет о так называемом раковом белке рп21 «рас». В норме этот белок массой 21 000 дальтон, или углеродных единиц, «сидит» под клеточной оболочкой и выполняет важнейшую регуляторную функцию, не давая клетке безостановочно делиться и превращаться в раковую.
Но это в норме. Однако при мутации, которая приводит к заменам аминокислот, белок становится раковым и перестает регулировать деление клетки.
Клетка начинает безостановочно делиться и превращается (трансформируется) в злокачественную. Такое наблюдается при карциноме мочевого пузыря человека.
В ходе исследований выяснилось, что при замене аминокислот в 12, 13, 59, 61 и 63 положениях от начала белковой цепи белок р21 «рас» приобретает раковые свойства. Каково же было удивление ученых, когда они увидели, что эти аминокислоты одинаковы, то есть консервативны, не только у млекопитающих, но также у дрозофилы, гриба, улитки и даже кишечной палочки, обитающей у нас в толстом кишечнике.
Как и в случае альфа-кристаллина хрусталика, мы видим одну довольно удивительную вещь: в белках имеются аминокислоты, стабильные на протяжении миллиардов лет эволюции живого, неизменные ни при каких формах организации живых организмов. В этих точках белков эволюции просто нет. И не дай Бог затронуть эти чувствительные точки. Тогда белок может стать раковым и со временем убить весь организм.
Повторим в заключение еще раз, что сам факт эволюции никто не может отрицать. Но вот механизмы эволюционного процесса для нас во многом остаются тайной за семью печатями.
Комплементарно к изменению живых организмов мы видим абсолютную неизменность в некоторых местах молекулярных структур, изменение которых чревато самыми неприятными для организма последствиями.