Литмир - Электронная Библиотека
A
A

Повышенная эластичность шины способствует улучшению взаимодействия колеса со слабыми грунтами и не вызывает больших перегревов при качении деформированной шины. Чтобы при понижении внутреннего давления шина не провернулась на ободе, ее борта зажимаются между ребордами разъемного диска и специальным распорным кольцом.

По мере снижения внутреннего давления в шинах площадь их контакта с грунтом увеличивается, а удельное давление снижается. Например, у автомобиля ЗИЛ-157 по замерам на твердом грунте среднее удельное давление составляет: при давлении в шинах рш = 3,5 кгс/см2 — 2,5, при рш = 1,5 кгс/см2 — 1,75, при рш = 0,5 кгс/см2 — 1,1 кгс/см2. Но по мере увеличения деформации шины возрастает сопротивление качению. У ЗИЛ-157 при буксировке его по твердой дороге сопротивление качению составляет: при рш = 3,5 кгс/см2 — 160, при рш = 1,5 кгс/см2 - 250 и при рш = 0,5 кгс/см2 — 550 кгс. Увеличение буксировочного сопротивления в этом случае связано с увеличением потерь на деформацию шин.

На мягком грунте величина деформации шин на соответствующих давлениях несколько меньше, чем на твердом, но доля потерь на деформацию шин в общем сопротивлении движению на низких давлениях воздуха значительна. Мощность, затрачиваемая на преодоление этих потерь, переходит в тепло, что приводит к повышенному нагреву шин. В связи с этим общая длительность движения с пониженным внутренним давлением в гарантийном пробеге шин и скорость движения ограничиваются специальными указаниями в инструкции по эксплуатации автомобиля.

Несмотря на то, что сопротивление качению деформированной шины выше, чем накаченной, общее уменьшение сопротивления движению по слабому грунту столь значительно, что в большинстве случаев дополнительные потери на деформацию шин полностью перекрываются уменьшением потерь на образование колеи (табл. 1). Как видно из табл. 1, потери на прокладывание колеи (потери в грунте) на луговине уменьшаются более чем в 4 раза (при давлении 0,5 кгс/см2), на сыром снегу (при давлении 1,5 кгс/см2) на 13–14 %, на песке (при давлении 0,5 кгс/см2) более чем в 3 раза.

Вождение автомобилей высокой проходимости. В помощь строителям БАМ. - pic_007.png
Таблица 1.

Уменьшение сопротивления качению при пониженном давлении воздуха в шинах — это только часть эффекта, который получается при работе на слабых грунтах. Иногда этот эффект очень невелик. Например, на рыхлом сыпучем снегу. Однако, несмотря на это, проходимость автомобиля резко возрастает. Более важной частью эффекта при работе автомобиля на деформированных шинах является улучшение сцепных качеств шины и рост тяговой реакции грунта. При качении такой шины она как бы превращается в маленькую гусеницу с длиной опорной ветви, равной длине контакта деформированной шины с грунтом (рис. 7). При этом тяга автомобиля при понижении давления воздуха в шинах существенно увеличивается (табл. 2). Если сравнить величину уменьшения сопротивления движению и величину роста тяги на крюке в результате понижения давления воздуха в шинах (см. табл. 1 и 2), то видно, что тяга возрастает не на величину уменьшения сопротивления движению, а на существенно большую величину. Причем тяга возрастает даже в том случае, когда сопротивление движению на пониженном давлении воздуха в шинах не уменьшается, а возрастает (в нашем примере на сыром снегу).

Вождение автомобилей высокой проходимости. В помощь строителям БАМ. - pic_008.png
Рис. 7. Характер взаимодействия деформированной шины с грунтом 20.
Вождение автомобилей высокой проходимости. В помощь строителям БАМ. - pic_009.png
Рис. 8. Сечение колеи и характер деформации грунта (сухой песок) колесом автомобиля: а — с накаченной шиной; б — с шиной, работающей на минимальном уровне давления.

Для сопоставления составим таблицу изменения сопротивления движению и тяги на крюке автомобиля ЗИЛ-157 при снижении давления в шинах с 3,5 до 0,5 кгс/см2 (табл. 3).

Следовательно, главной частью эффекта, получаемого при работе автомобиля на шинах, деформированных до 30 % от высоты профиля, является улучшение их сцепных качеств. Вследствие этого резко повышаются тяговые возможности автомобиля и его проходимость.

Вождение автомобилей высокой проходимости. В помощь строителям БАМ. - pic_010.png
Таблица 2.
Вождение автомобилей высокой проходимости. В помощь строителям БАМ. - pic_011.png
Таблица 3.

На пластичных и близких к ним по характеру грунтах, таких, как глина, суглинок, сырой снег, сырая луговина, тяга, развиваемая колесом, возрастает пропорционально увеличению площади контакта колеса. Положительную роль играет в этом случае большее число грунтозацепов шины, находящихся одновременно в контакте с грунтом, а также боковые грунтозацепы, которые начинают активно работать, а следовательно, и растет сечение грунта, заключенного между грунтозацепами. Большую роль также играет характер уплотнения грунта в колее (рис. 8). Вогнутый характер следа у шины с пониженным давлением способствует лучшему уплотнению колеи и, следовательно, большей тяговой реакции грунта.

Эффект гусеницы проявляется при таком характере качения колеса и в том, что время воздействия уплотняющей силы на грунт возрастает пропорционально увеличению длины контакта опорной поверхности колеса (рис. 9).

Вождение автомобилей высокой проходимости. В помощь строителям БАМ. - pic_012.png
Таблица 4.

Разные типы грунтов имеют различный характер сопротивления сдвигу в зависимости от степени их деформации. Соответственно они оказывают различную тяговую реакцию, от которой зависит тяга, развиваемая колесами по сцеплению с грунтом. В табл. 4 в приближенных цифрах (см. графу 2) показано, как изменяется тяговая реакция R у рыхлых и пластичных грунтов (тип I), хорошо поддающихся уплотнению. На этих грунтах по мере увеличения уплотнения грунтовых призм, заключенных между грунтозацепами, окружной силой Т, действующей со стороны колеса, тяговая реакция грунта постепенно возрастает вплоть до полного среза призмы. Дальнейшее увеличение пробуксовки колеса тяговой реакции не увеличивает, и она остается постоянной. Следовательно, на таких грунтах допускать интенсивную буксовку колес не следует, так как тяга от этого не будет увеличиваться.

В графе 3 таблицы показан характер изменения тяговой реакции грунтов (тип II), которые в результате сдвига, после незначительного уплотнения, меняют структуру и разрушаются. На этих грунтах наибольшая тяговая реакция достигается при небольшом уплотнении грунтовых призм грунтозацепами, перед началом структурного разрушения грунта, и резко снижается после разрушения грунта. Этот тип грунтов требует движения с принудительным ограничением уровня тяги на колесах на малых скоростях (такие характеристики имеет смерзшийся сверху снег, засохший сверху ил и глина).

В графе 4 показан характер сопротивления сдвигу грунтов (тип III), занимающих промежуточное положение между грунтами, приведенными в графах 2 и 3 таблицы. Тяговая реакция на этих грунтах достигает максимума при деформации грунтовых призм на 30–50 %. При дальнейшей деформации наступает срез призм, тяговая реакция снижается и начинается буксование.

Но это снижение не происходит так резко, как у грунтов, приведенных в графе 3. К грунтам графы 4 относится большая часть сельскохозяйственных грунтов и снежный покров в средних климатических условиях.

4
{"b":"133578","o":1}