Кто изобрел зрительную трубу?
В 1608 году один из учеников Ганса Липперши, голландского мастера по изготовлению очков, развлекаясь в свободное от работы время, стал рассматривать предметы через две линзы, расположенные одна за другой. Он очень удивился, обнаружив, что предметы, находившиеся на некотором расстоянии, выглядели так, будто были у него на ладони. Ученик рассказал об этом хозяину, и Липперши изготовил первую зрительную трубу, поместив в трубке на соответствующем расстоянии друг от друга две линзы. Принц Мауриций Нассау, командовавший голландскими вооруженными силами, понял, что этот инструмент можно применять в военных целях, и приказал держать его в секрете. Однако слухи об изобретении приспособления, позволяющего хорошо рассмотреть отдаленные предметы, все же распространились. Среди тех, до кого дошли эти слухи, был великий физик, механик и астроном Галилео Галилей. Зная лишь то, что в загадочном приспособлении используются линзы, Галилей сумел самостоятельно разобраться в принципе его действия. В 1609 году он собственноручно собрал свою зрительную трубу, значительно более совершенную, чем изготовленная Липперши. Проведя с помощью зрительной трубы множество наблюдений земных объектов в самых разнообразных условиях и убедившись в достоверности получаемой с ее помощью информации, Галилей обратил ее к небу и тем самым превратил зрительную трубу в телескоп – важнейший инструмент науки нового времени.
Во сколько раз температура термоядерной реакции выше температуры видимой поверхности Солнца?
Температура видимой поверхности Солнца составляет величину около 6 тысяч градусов Кельвина. В центре Солнца, где протекает термоядерная реакция (превращение ядер водорода в гелий), температура, по современным представлениям, достигает величин около 15 миллионов градусов. Таким образом, температура термоядерной реакции выше температуры видимой поверхности Солнца приблизительно в 2,5 тысячи раз.
Сколько «элементарных» частиц известно в настоящее время?
Элементарными частицами называют мельчайшие частицы физической материи. Представления об элементарных частицах отражают ту степень в познании строения материи, которая достигнута современной наукой. Характерной особенностью элементарных частиц является их способность к взаимным превращениям – это не позволяет рассматривать элементарные частицы как простейшие, неизменные «кирпичики мироздания», подобные атомам Демокрита. Число частиц, которые называются в современной теории элементарными, очень велико. Каждая элементарная частица (за исключением истинно нейтральных частиц) имеет свою античастицу. Всего вместе с античастицами открыто более 350 элементарных частиц. Из них стабильны фотон, электронное и мюонное нейтрино, электрон, протон и их античастицы. Остальные элементарные частицы самопроизвольно распадаются за время от приблизительно 1000 секунд (для свободного нейтрона) до ничтожно малой доли секунды, выражаемой дробью с единицей в числителе и единицей с 22–24 нулями в знаменателе (для резонансов). Рассказывают, что, когда некий студент спросил Энрико Ферми о названии какой-то элементарной частицы, великий физик ответил: «Молодой человек, если бы я мог запомнить названия всех этих частиц, я бы стал ботаником».
Каким считали атом до Резерфорда?
К началу ХХ века было известно, что атомы состоят из частей (электрон был открыт в 1897 году), но никто не знал, как много этих частей, как они «стыкуются» в атоме и какую форму имеет атом. Некоторые физики полагали, что атомы должны быть кубической формы, поскольку именно она обеспечивает наиболее плотную «упаковку», без ненужных затрат пространства. Однако наиболее распространенным мнением было то, что атом напоминает булочку с изюмом – плотный твердый объект, несущий положительный заряд и утыканный отрицательно заряженными электронами-изюминами.
Какая часть объема атома приходится на его ядро?
Размер атома определяется радиусом наиболее удаленной от ядра электронной орбиты, порядок величины этого радиуса в метрах выражается дробью с единицей в числителе и единицей с 10 нулями в знаменателе. Порядок величины радиуса атомного ядра в метрах выражается дробью с единицей в числителе и единицей с 14–15 нулями в знаменателе. Таким образом, радиус атомного ядра на 4–5 порядков (в 10 000–100 000 раз) меньше радиуса атома. Отсюда следует, что объем атомного ядра меньше объема, занимаемого атомом, на 12–15 порядков величины, то есть в триллион – квадриллион раз.
Как велика плотность атомного ядра?
В ядре сконцентрирована почти вся масса атома, а поскольку объем атомного ядра ничтожно мал по сравнению с объемом самого атома, плотность атомного ядра огромна: она составляет 200 квадриллионов килограммов на кубический метр (квадриллион – число, изображаемое единицей с 15 нулями). Один кубический миллиметр ядерного вещества на поверхности Земли весил бы 200 тысяч тонн.
Как долговечны атомы?
Атомы практически вечны. Согласно некоторым оценкам, продолжительность их существования, выраженная в годах, изображается единицей с 35 нулями – сто триллионов секстиллионов.
Что больше: энергия, выделяемая при распаде одного ядра урана, или энергия, затрачиваемая комаром на один взмах крыла?
Энергия, выделяемая при распаде одного ядра урана, составляет величину порядка 10 триллионных джоуля, а затрачиваемая комаром на один взмах крыла – величину порядка 1 десятимиллионной джоуля. Таким образом, энергия одного взмаха комариного крыла равна энергии, выделяемой при распаде приблизительно 10 тысяч ядер урана!
Как Рентген обнаружил излучение, названное позже его именем?
5 ноября 1895 года немецкий физик Вильгельм Конрад Рентген (1845–1923) проводил эксперимент по изучению люминесценции, вызываемой катодными лучами. Чтобы эффект был нагляднее, он не только поместил электронно-лучевую трубку и люминесцирующее вещество в черный картонный ящик, но даже наглухо зашторил окна в лаборатории. Включив электронно-лучевую трубку, Рентген неожиданно увидел вспышку света в другой половине комнаты. Оказалось, свет исходил от листа бумаги, покрытого платиноцианидом бария – люминесцирующим веществом. Рентген очень удивился: как излучение могло проникнуть сквозь стенки коробки и вызвать свечение бумаги? Он выключил электронно-лучевую трубку – свечение исчезло. Опять включил трубку – свечение появилось снова. Рентген перенес бумагу в другую комнату – она продолжала светиться. Ученому стало ясно, что в электронно-лучевой трубке возникает некая форма излучения, способного проникать не только сквозь картон, но и сквозь стены. У Рентгена не было никаких идей относительно природы этих лучей, поэтому он назвал их икс-лучами (Х-лучами). Уже другие ученые стали называть их рентгеновскими. За открытие этих лучей Рентгену в 1901 году была присуждена Нобелевская премия по физике.
Сколько термоядерной энергии можно получить из литра обыкновенной воды?
В литре обычной воды содержится примерно 0,03 грамма изотопа водорода – дейтерия. Выделив его из воды и использовав в качестве горючего для термоядерной реакции, можно получить столько же энергии, сколько дает сжигание 300 литров бензина. Запасов дейтерия на Земле хватит, чтобы обеспечивать человечество энергией на протяжении около миллиарда лет. Осталось только решить проблему управляемого термоядерного синтеза.
Что такое тротиловый эквивалент?
Тротиловый эквивалент – энергетическая характеристика взрыва ядерного или термоядерного заряда. Количественно тротиловый эквивалент равен массе условного заряда химического взрывчатого вещества тринитротолуола (тротила), энергия взрывчатого разложения которого равна энергии, выделяемой при данном ядерном взрыве. Измеряется тротиловый эквивалент в килотоннах (тысячах тонн) и мегатоннах (миллионах тонн). Ядерный взрыв одного килограмма урана-235 или плутония-239 при полном делении всех ядер эквивалентен по количеству выделившейся энергии химическому взрыву 20 тысяч тонн тринитротолуола.