Следовательно, при объединении четырех первых и седьмого начала с его двумя законами - заряжания и экранирования - совокупность уравнений (287)-(291) для идеального тела должна быть преобразована к новому виду, где вместо выражения (287) должно фигурировать выражение типа (217). Имеем
U = U3 + UЭ = Р1Е1 + Р2Е2 (293)
Соответственно должны измениться числовые коэффициенты и в последующих формулах (288)-(291).
В случае реального тела коэффициенты А и К являются величинами переменными, при этом числовые множители перед произведениями РЕ в формуле (287) могут быть либо больше (рис. 8, кривая 1), либо меньше 1/2 (кривая 3). Однако для приближенных расчетов вполне можно пользоваться уравнением типа (293), которое было апробировано М. Механджиевым применительно к химическим явлениям [54, 57].
Объединение всех семи начал не вызывает затруднений в отдельных частных случаях, когда заданы конкретные условия распространения вещества в системе и известны все статьи его расхода. О возможных при этом упрощениях задачи дают представление данные, приведенные в параграфе 1 гл. XVI [ТРП, стр.297-300].
4. Закон тождественности.
Рассмотренные выше способы применения начал далеко не исчерпывают всех имеющихся возможностей: они будут постепенно расширяться по мере развития аппарата ОТ и охвата все более широкого круга явлений. Например, с помощью начал могут быть выведены многочисленные другие, частные, законы, представляющие теоретический и практический интерес. Приведу несколько таких законов, они отличаются значительно большей общностью, чем многие известные законы, непосредственно вытекающие из упомянутых частных.
Согласно третьему началу, все степени свободы ансамбля органически связаны между собой. Количественная сторона взаимного влияния степеней свободы определяется величинами перекрестных коэффициентов уравнения состояния. Но может случиться так, что какая-либо из степеней свободы будет слабо связана с остальными. При этом соответствующими коэффициентами взаимности можно пренебречь. Тогда у группы ансамблей, существенно различающихся характеристиками слабо связанных степеней свободы, остальные свойства окажутся приблизительно одинаковыми, тождественными. Этот результат именуется законом тождественности групповых свойств ансамблей, или кратко законом тождественности [18, с.99; 21, с.181]. Поясню его на конкретном примере.
Предположим, что ансамбль располагает тремя степенями свободы: кинетической, вермической (термической) и механической. Уравнение состояния типа (54) для этого случая имеет вид
d(?2) = Ammdm + Am?d? + AmVdV ;
dT = A?mdm + A??d? + A?VdV ; (294)
dp = AVm + AV?d? + AVVdV .
Здесь для наглядности индексы при коэффициентах состояния обозначены не цифрами, а буквами, соответствующими экстенсорам.
Кинетическая степень свободы иногда слабо связана с вермической и механической. Этот факт может быть выражен с помощью следующих приближенных равенств:
Am? = A?m ? 0 ; AmV = AVm ? 0 (295)
В данных условиях в первой строчке уравнения (294) выпадают слагаемые, зависящие от вермиора и объема, а во второй и третьей строчках - слагаемые, зависящие от массы. Это означает, что вермическая и механическая степени свободы практически не влияют на скорость, а кинетическая степень свободы - на температуру и давление. Следовательно, если рассматривается группа ансамблей, которые различаются массами (dm ? 0), но имеют равные вермиоры (d? = 0) и объемы (dV = 0), то температуры, как и давления, у всей группы будут приблизительно одинаковыми (dT ? 0 , dp ? 0), хотя свойства, сопряженные с массой, окажутся весьма различными.
Все сказанное справедливо не только для интенсиалов, но и для других свойств ансамбля. Например, применительно к ансамблю (294) по аналогии с уравнением закона структуры (73) с учетом четвертого начала ОТ можно написать уравнение для шести коэффициентов состояния А , которые обратны емкостям К . Равенство нулю перекрестных коэффициентов, связанных с массой, освобождает вермоемкость и объемную емкость от влияния массы. Иными словами, переход от одного ансамбля группы к другому, отличающемуся от первого своей массой, сопровождается изменением массоемкости и не влияет на вермоемкость и объемную емкость ансамбля. Аналогичные рассуждения можно также провести для свойств более высоких порядков.
Закон тождественности можно кратко сформулировать следующим образом: если в группе одноименных ансамблей данный экстенсор слабо связан с остальными, то его изменение мало сказывается на всех свойствах группы, не сопряженных с этим экстенсором [18, с.99; 21, с.181]. Минимальное число ансамблей, составляющих группу, равно двум, верхний предел этого числа не ограничен. Из общего закона тождественности в качестве частных случаев вытекают многие известные опытные законы физики и химии. В этом нетрудно убедиться на упомянутом выше конкретном примере для кинетическо-вермическо-механической системы (см. уравнения (294) и (295)).
Предположим, что дана группа макроансамблей, каждый из которых состоит из большого множества микроансамблей - атомов или молекул. Количество микроансамблей выбирается одинаковым, равным, например, числу Авогадро. Тогда благодаря слабой связи кинетической степени свободы с вермической и механической при одинаковых мольных вермиорах и объемах и различных мольных массах температура и давление, а также мольные емкости и другие свойства сравниваемых макроансамблей группы должны быть приблизительно равны между собой.
Применительно к газам отсюда прямо следует известный закон Авогадро, согласно которому килограмм-молекулы различных газов занимают при одинаковых температурах и давлениях одинаковые объемы. Как видим, в законе Авогадро причина и следствие поменялись местами: фактически вермиор и объем определяют температуру и давление, а не наоборот, как думал Авогадро.
Из сказанного также вытекает известный закон Дальтона. По Дальтону, давление смеси газов равно сумме давлений, которые оказывали бы газы, если бы находились в сосуде каждый в отдельности. Согласно закону тождественности, индивидуальные свойства молекул, входящих в состав газовой смеси, в частности их массовые свойства, роли не играют, а важно лишь общее число молекул. Следовательно, каждый газ вносит свой вклад в общее давление, то есть создает так называемое парциальное давление в соответствии с числом своих молекул, а суммарное давление определяется суммарным количеством молекул смеси. Аналогично получаются известные законы Максвелла, Дюлонга и Пти, а также Неймана и Коппа, свидетельствующие об одинаковости мольных теплоемкостей различных веществ.
Необходимо подчеркнуть, что закон тождественности - это в принципе приближенный закон, он выполняется только в меру соблюдения равенств типа (295). Величина возникающей погрешности определяется значениями перекрестных коэффициентов, входящих в эти приблизительные равенства и характеризующих взаимное влияние явлений, которое в нуль никогда не обращается. Закон тождественности важен для правильного понимания тех закономерностей, которые наблюдаются в природе и были в разное время зафиксированы в качестве опытных законов. Наконец, разъяснилась загадка, давно привлекавшая внимание ученых, почему на практике законы Авогадро, Дальтона, Дюлонга и Пти, Неймана и Коппа и т.д. соблюдаются не точно. Более подробно все эти вопросы рассматриваются в работах [18, с.99; 21, с.181] [ТРП, стр.300-302].
5. Закон отношения проводимостей.
Воспользуемся теперь началами, определяющими явления переноса, и выведем еще два новых закона, из которых вытекают многие известные законы физики и химии; для простоты рассмотрим две степени свободы. Первый закон - отношения проводимостей - получается из соотношений (106), (112), (113), (117), (118), (122), (123), (127), (128). При n = 2 имеем [16, с.24; 17, с.65; 18, с.167; 21, с.185]
?11/?22 = ?11/?22 = L11/L22 = M11/M22 = ? = KP11/KP22 = AP22/AP11 ; (298)