В этом фактически и заключается суть закона Вольта; соответствующий вывод может быть сделан для любого числа тел.
Однако если тела привести в соприкосновение друг с другом (рис. 38, б), то вольтовская идиллия несколько нарушается. Это объясняется тем, что скачки потенциалов возникают между пристеночными слоями х, имеющими толщину порядка размеров нескольких атомов. Термодинамические свойства каждого такого слоя заметно изменяются в зависимости от того, с каким конкретно другим телом соприкасается данное: вакуумом, воздухом, диэлектриком, полупроводником, металлом и т.п. При этом изменяются коэффициенты состояния А, а значит, и функции f.
Новые функции f для контактирующих поверхностей (слоев х) изображены на рис. 38, е штриховыми линиями. В условиях контакта при температуре Т тело 1 уже не имеет прежнего потенциала ?А : на поверхности соприкосновения с телом 2 оно обладает потенциалом f12 (первый индекс соответствует номеру данного тела, второй - номеру тела, с которым соприкасается данное), а на поверхности соприкосновения с телом 3 - потенциалом f13. Такие же изменения потенциала наблюдаются и у других тел. В результате получаются новые скачки потенциалов f12 , f23 и f31 , отличные от вольтовских ?АВ , ?ВС и ?СА . Эти новые скачки в сумме могут и не быть равны нулю, что нарушает закон Вольта.
Как видим, причина нарушения закона Вольта кроется во взаимном влиянии, взаимодействии контактирующих тел, которое законом не предусматривается. Благодаря нарушению закона Вольта в замкнутой цепи появляются нескомпенсированная ЭДС и электрический ток, в итоге цепь превращается в вечный двигатель второго рода со всеми вытекающими отсюда последствиями. Остановимся на изложении теории этого вопроса несколько подробнее [7, 8, 10] [ТРП, стр.462-465].
6. Термоэлектрические ПД.
Все потенциалы, обозначенные на рис. 38, е буквой f, имеют переменные значения, зависящие от свойств и условий взаимодействия проводников. При этом переменные разности типа ?А - f12 , ?А - f13 , ?В - f21 , ?В - f23 , ?С – f32 , ?С – f31 представляют собой внутренние скачки потенциала, так как возникают в данном теле между слоями х и остальным его веществом. Переменные разности типа f12 , f23 и f31 , возникающие на границе раздела, соприкосновения разнородных тел, являются скачками внешними. При определении нескомпенсированной ЭДС надо просуммировать все эти скачки. Однако внутренние скачки обычно бывают заметно меньше внешних, ибо внутренние и поверхностные слои данного тела различаются между собой не так сильно, как сами разнородные тела. Поэтому для простоты и наглядности рассуждений в первом грубом приближении можно пренебречь внутренними скачками по сравнению с внешними. Тогда искомая нескомпенсированная ЭДС, например, для трех тел (?3) может быть выражена только через внешние скачки ?12 , ?23 и ?31 . Находим
?3 = ?12 + ?23 + ?31 = f12 – f21 + f23 – f32 + f31 – f13 ? 0 (339)
где
?12 = f12 – f21 ; ?23 = f23 – f32 ; ?31 = f31 – f13 (340)
В рассматриваемых условиях разности типа f12 – f13 , f21 – f23 и f31 – f32 , обозначенные на рис. 38, е тройными вертикальными прямыми, представляют собой перепады потенциала вдоль первого, второго и третьего проводников. Если один из них разорвать, то в двух других указанные перепады обращаются в нуль, а разность потенциалов на концах разорванного проводника становится равной нескомпенсированной ЭДС ?3 , которую можно легко измерить. При этом электрический ток отсутствует, а потенциалы ?А , ?В и ?С приобретают некие новые значения, обусловленные перераспределением заряда в разорванной цепи.
В общем случае при наличии цепи, состоящей из n тел, получается такая же картина (?n ? 0). В частном случае, когда цепь составлена всего из двух тел (n = 2), формула (339) дает
?2 = ?12 + ?21 = f12 – f21 + f21 – f12 = 0
что хорошо согласуется с законом Вольта, но при этом суммируются не вольтовские, а искаженные взаимным влиянием тел скачки потенциалов.
Следовательно, при замыкании в цепь трех или более тел (n ? 3) суммарная ЭДС цепи, вопреки закону Вольта, может быть не равна нулю. При этом немаловажное значение приобретает конкретное сочетание и чередование тел в замкнутой цепи. В частности, при симметричном расположении проводников некоторые из них на ЭДС цепи могут не оказать влияния. Например, звено 2, симметрично расположенное относительно проводников 1 (рис. 38, в), из рассмотрения выпадает - это прямо следует из уравнения типа (339). Точно так же на ЭДС не влияют звенья 2 и 3 (рис. 38, г), но при том же составе проводников можно образовать цепь, у которой все звенья вносят свой полноценный вклад в ЭДС (рис. 38, д). Это должно свидетельствовать о том, что в реальных условиях скачки потенциала являются величинами переменными, а вольтовский детерминизм утрачивает свою силу из-за воздействия закона состояния ОТ на электрический интенсиал f. Обсуждаемая картина очень напоминает механическую: в механике железный детерминизм ее законов нарушается благодаря изменению хронального интенсиала ? под управлением закона состояния. Эти примеры весьма наглядно показывают, как уточняются и исправляются хорошо известные законы физики под влиянием начал ОТ; при этом открываются принципиально новые возможности.
Таким образом, цепь, составленная из трех и более проводников, представляет собой вечный двигатель второго рода: под действием нескомпенсированной ЭДС происходит вечная круговая циркуляция электрического заряда. В спаях цепи наблюдаются поглощение и выделение теплоты Пельтье, а вдоль проводников - поглощение и выделение теплоты Томсона и теплоты нового линейного эффекта, описанного в работах [18, с.316; 21, с.312], а также выделение теплоты Джоуля. Алгебраическая сумма теплот Пельтье, Томсона и линейного эффекта равна и противоположна по знаку суммарной джоулевой теплоте - этим балансом обеспечивается циркуляция заряда в условиях изоляции цепи от окружающей среды. Получается самофункционирующая термодинамическая пара, только в данном случае приходится соединять между собой не два, а три и более проводников. В связи с этим должен заметить, что в любой термодинамической паре в общем случае может быть задействовано не обязательно два, но произвольное количество проводников.
Теплота Пельтье, поглощаемая и выделяемая в спаях, приводит к появлению между ними разности температур. Это обстоятельство может быть использовано для повышения эффективности работы ПД-14. С этой целью свойства проводников надо подбирать таким образом, чтобы термоЭДС, возникающая между спаями цепи (эффект Зеебека), усиливала бы нескомпенсированную ЭДС.
Что касается самого эффекта Пельтье, то переменность скачков потенциала сыграла роковую роль в деле правильного понимания физической сути этого эффекта. Эффект Пельтье имеет чисто диссипативную природу и может быть как положительным (экранированная теплота выделяется), так и отрицательным (теплота экранируется, поглощается), причем количество тепла Пельтье в точности равно произведению разности (скачка) потенциалов на силу тока. Но если в качестве скачка взять постоянную вольтовскую разность типа ?АВ , не исправленную на взаимное влияние тел А и В, то результаты опытов по независимому определению количества тепла Пельтье и измерению разности ?АВ и силы тока не совпадут между собой. Из-за этого несовпадения теплоте Пельтье был придан недиссипативный смысл, факт существования отрицательной диссипации был замаскирован, что лишний раз подтверждало идею Клаузиуса об одностороннем развитии мира, то есть о существовании только положительной теплоты диссипации.
Механическое вечное движение можно наблюдать в термоэлектрическом двигателе ПД-17. Для этого надо легкую шелковинку или бузиновый шарик подвесить между пластинами, подключенными к ПД-14 (рис. 38, ж). Шелковинка, попеременно соприкасаясь с пластинами, перезаряжается и совершает таким образом периодические колебательные движения.