Литмир - Электронная Библиотека
A
A

Изучение древней астрономии в Египте на протяжении многих лет находилось под давлением авторитета самого известного специалиста в этой области, Отто Ней-гебауэра, несколько раз заявлявшего, что "Египет не внес вклада в историю математической астрономии" (Нейгебауэр, 1969, 1976). Однако достаточно познакомиться с информацией о египетских астрономических текстах, содержащейся в фундаментальном труде самого Нейгебауэра и Ричарда Паркера, чтобы понять ошибочность этого утверждения. Еще одной проблемой, обусловленной негативным влиянием Нейгебауэра, стало предположение, что в Век пирамид (эпоху Древнего Царства) астрономии еще не существовало. И действительно, книга Нейгебауэра и Паркера начинается со Среднего Царства (далее мы убедимся в ложности этого утверждения).

Источником разногласий служит тот факт, что в нашем распоряжении нет древнеегипетских текстов чисто астрономического содержания. На мой взгляд, это обусловлено тем, что папирусы просто не входили в число погребальных принадлежностей, составляющих подавляющее большинство предметов, найденных археологами. В любом случае не подлежит сомнению, что египетские астрономы вели записи многочисленных астрономических данных. Это становится понятным из тех "астрономических текстов", которые использовались в погребальных обрядах и встречаются на многих саркофагах Среднего Царства и гробницах Нового Царства, таких, как знаменитая гробница Семнута, архитектора царицы Хатшепсут, и многие гробницы эпохи Рамсеса в Долине Царей.

Во времена Среднего Царства использовались так называемые деканальные списки.

Деканами назывались тридцать шесть звезд (или групп звезд), гелиакический восход которых (день первого восхода перед рассветом после периода слияния с солнцем, то есть невидимости) имел место в каждую из "недель" (египетская неделя состояла из десяти дней).

То есть календарь делился на деканы (36 х 10) плюс пять эпагоменальных дней, которые также ассоциировались с особыми деканаль-ными звездами (речь идет о так называемом религиозном сотическом календаре, в основе которого лежит гелиакический восход Сириуса, который, таким образом, считался первым деканом).

Нейгебауэр и Паркер показали, что вероятные деканы должны находиться в полосе неба к югу от эклиптики, но они считали невозможной точную идентификацию этих деканов.

Это оказалось ошибкой, и сегодня у нас есть ясное представление о том, с какими звездами ассоциировались деканы (Бельмонте, 2001). Кроме того, деканы использовались для измерения времени по ночам. Об этом свидетельствуют так называемые звездные часы, в которых ночные часы ассоциируются с последним часом первого дня гелиакического восхода текущего декана. По прошествии "недели" восход этого декана смещается во времени назад, указывая на начало предыдущего часа, а его место занимает следующий декан и так далее - всего двенадцать раз. Разумеется, длительность каждого часа была переменной величиной. В нашем представлении, час имеет фиксированную продолжительность, а длительность ночи меняется, тогда как у египтян все было наоборот (наше деление дня на двадцать четыре часа имеет в основе египетское деление на двенадцать ночных и двенадцать дневных часов, а также фиксированную продолжительность часа, как у вавилонян).

Во времена Нового Царства фиксировался не восход деканов, а пересечение линии меридиана, но способ записи небесных событий оставался прежним. Об этом можно судить по звездным часам эпохи Рамсеса. На них человеческая фигура (помощник астронома или, возможно, статуя) изображена позади таблицы из девяти столбцов и тринадцати строк.

Строки ассоциируются с ночными часами, столбцы - с частями тела "человека-указателя", указывающими на прохождение или положение звезд ночью. Таблица менялась каждые пятнадцать дней. Я не буду углубляться в проблемы, связанные с интерпретацией подобных текстов. Мне хочется лишь подчеркнуть, что, хотя эти астрономические приспособления изображены в гробницах ("чтобы направлять душу в ночное время"), они явно скопированы из научных источников (читатель, если пожелает, может взять термин "научных" в кавычки, но я не стану этого делать).

В действительности уже в эпоху Среднего Царства астрономы имели точные данные о движении тридцати шести звездных объектов (время восхода, период невидимости и т. д.), и это значит, что они должны были выбрать эту информацию из огромного числа наблюдений.

Не подлежит сомнению, что можно выявить прецессионный эффект гелиакического восхода звезды, имея данные с точностью 0,5 градуса, скажем, за три столетия. Это привело таких ученых, как Пого (1930) и Заба (1953), к выводу, что прецессия была известна в Египте еще в глубокой древности. Кроме того, следует отметить, что некоторые специалисты в попытке объяснить необычное расположение созвездий на знаменитой карте звездного неба, известной как Зодиак Дендеры, предположили наличие связи с прецессионным движением Северного полюса (см., к примеру, работы Тревизана). Однако Зодиак Дендеры датируется первой половиной последнего столетия до н. э., то есть он был создан после открытия Гиппарха. И в этом случае у нас нет письменных свидетельств, которые однозначно указывали бы на открытие прецессионного эффекта.

Звездный сфинкс: Космические тайны пирамид - pic_16.jpg

2.4 Месоамерика

Известно, что майя вели очень точные астрономические записи (Эйвени, 2001). К сожалению, всего четыре "кодекса" майя сумели пережить аутодафе, устроенное епископом Юкатана Диего де Ландой, который проклял все еретические книги. Эти "кодексы" содержали информацию о солнечных затмениях, о Венере и Меркурии. Данные настолько точны (так, например, в основе таблицы движения Венеры из "Дрезденского кодекса" лежат наблюдения, которые велись на протяжении многих десятилетий), что способность астрономов майя выполнять точные астрономические измерения не вызывает сомнений.

Однако прецессию невозможно обнаружить по движению солнца, луны и видимых планет, а у нас нет свидетельств того, что майя наблюдали за звездами (возможно, за исключением так называемого "Парижского кодекса", который еще полностью не расшифрован).

3.0 Астрономическая ориентация

До сих пор мы рассматривали возможные текстологические свидетельства. Однако существует и другой способ следить за перемещением небесных тел и оставить астрономические данные потомкам - при помощи астрономической ориентации зданий. Исследуя изменение их ориентации на протяжении столетий, нетрудно заметить прецессионный эффект (я использую не очень корректный термин "звездной" ориентации в отношении звезд, отличных от солнца).

3.1 Египет: ориентация храмов

Пионером изучения астрономической ориентации храмов Египта был Норман Локьер (1894). В своей книге он проанализировал ориентацию многих храмов, но я подробно рассмотрю лишь один пример, касающийся двух главных фиванских храмов, в Карнаке и в Луксоре, как наиболее подходящий для наших целей.

Эти два храма имеют тысячелетнюю историю, и за этот период они несколько раз реконструировались и расширялись. Чаще всего разные фараоны в разные эпохи строили дополнительные галереи, направление которых совпадало с направлением главных осей обоих храмов. Если взглянуть на план храма в Карнаке, становится очевидным, что при его расширении строго придерживались направления главной оси. Локьер показал, что это направление указывает на точку захода солнца в день летнего солнцестояния. Этот вывод Локь-ера подвергался критике, потому что холмы на горизонте не позволяли лучам заходящего солнца проникать в галерею, но сегодня мы знаем, что наблюдения велись с другой стороны храма, из святилища, которое - находясь на оси, параллельной главной оси храма, - явно ориентировано на восход солнца в день зимнего солнцестояния (Крапп, 1983, 1988). В любом случае ориентация храма на дни солнцестояния не подлежит сомнению, и поскольку прецессия не оказывает воздействия на видимое движение солнца, при реконструкции храма его ориентация не менялась.

57
{"b":"129612","o":1}