Литмир - Электронная Библиотека
Содержание  
A
A

Пусть единичный визуальный рецептор представляет собой простое устройство, отличающее светлое от темного. Им может быть, например, фотоэлемент, который можно отрегулировать так, чтобы он "чувствовал" границу между светлым и темным. Фотоэлемент, таким образом, будет обладать двумя состояниями, которые мы назовем 0 и 1. Если перед таким единичным рецептором окажется карточка с буквой А, то он зарегистрирует меру ее серости как определенную смесь черного и белого на этой карточке. Он не определит форму, которой для нас соответствует буква А, а определит нечто уникальное в букве А из серии наших карточек. Далее буква В может дать другую смесь белого и черного, другую градацию серости. Поскольку мы можем изменять порог чувствительности фотоэлемента, чтобы он регистрировал либо 0, либо 1, то появляется возможность менять порог его чувствительности (по крайней мере теоретически) так, чтобы он отличал букву А от В. Когда мы дойдем до С, то разнообразие нашего фотоэлемента, увы, уже исчерпается, т. е. мы уже ничего не можем сделать с последующими буквами от С до Z . Ясно, что одного рецептора недостаточно. Более того, как нам кажется, нужно 26 рецепторов, каждый тщательно отрегулированный на свою букву. Если это так, то мы удовлетворим закон о требуемом разнообразии: число фотоэлементов, присоединенных к входным рецепторам и сенсориуму, станет соответствовать 26 состояниям рассматриваемого нами любого слова.

Однако если у нас есть только один первичный рецептор, то мы можем проделать с ним трюк другого сорта. Можно разделить весь набор карточек с буквами на две части так, чтобы в одной половине оказались более светлые, а в другой темные буквы. (При этом предполагается, что можно создать такой шрифт, у каждой буквы которого будет свое особое соотношение черного и белого.) Такаяих организация позволит относить карточку только к одной из двух групп, поскольку такова возможность рецептора оценивать разнообразие. Но этот элемент будет обследовать все карточки и рассортировывать их на две пачки — на более светлые (которые рецептор принимает за 0) и более темные (которые принимаются за 1). Если мы достаточно точно установим границу чувствительности, то в каждой пачке у нас будет по 13 карточек. Рецептор, таким образом, в состоянии считывать все 26 карточек и давать 26 сигналов, один за другим, как серию нулей и единиц и распределять каждую карточку в соответствующую пачку.

Преимущество всего этого в том, что здесь один рецептор с разнообразием два (а именно, 0 или 1) способен уменьшить, в два раза размерность решения проблемы соотнесения любой из 26 букв. Мы, таким образом, получили 13 разнообразных вариантов за счет двух. Может показаться, что пользы в этом мало, однако это весьма важно. Вообще, двоичный классификатор (рецептор 0 или 1) при эффективном использовании в два раза уменьшает неопределенность, с которой он встретился. Все проблемы, относятся ли они к распознаванию, классификации или к самому решению, — проблемы неопределенности. Если нет неопределенности в отношении промышленной ситуации, то руководителю не нужно принимать решения. Если нет неопределенности в начертании буквы, то мы можем ее прочесть. Ситуациями с большей неопределенностью трудно управлять именно потому, что мераих разнообразия и есть мера их неопределенности.

Именно поэтому так важен трюк, который мы только что продемонстрировали. Как бы ни была велика проблема, ее разнообразие, в принципе, может быть уменьшено в два раза с помощью одного решающего элемента. Приведем другой пример. Вы ищете кого-либо в танцевальном зале, где танцуют 500 пар. Разнообразие тогда составляет 1000; фактор неопределенности составляет 1: 1000, а вероятность правильного решения при случайной выборке равна 0, 001. Таков масштаб проблемы. Но если вы знаете, ищете вы мужчину или женщину, то масштаб проблемы сразу уменьшается в два раза.

Вернемся теперь к проблеме чтения всего алфавита. Мы показали, что 13 более светлых букв могут отличаться от 13 более темных букв с помощью одного избирательного рецептора, способного определять среднюю границу их серости. Взяв теперь пачку карточек из 13 букв и второй рецептор, получим возможность отделить 6 одних букв от 7 других, используя такое же устройство — фотоэлемент, порог чувствительности которого соответствовал бы середине между самыми темными и самыми светлыми буквами. Конечно, такой же рецептор можно использовать для сортировки и второй пачки букв, когда до них дойдет очередь. Для сортировки шести (или семи) карточек используем третий рецептор, который сведет проблему к двум новым половинам (из 3 или 4 карточек). С помощью четвертого рецептора мы сможем разобраться и с этими пачками, поскольку знаем, что каждая буква уже проверена и является одной из двух. Тогда пятый рецептор различит и эти оставшиеся две буквы. Неопределенность, с которой мы начали — определить любую из 26 букв, исчезла: теперь мы знаем, какая буква какая, и достигнуто это использованием пяти фотоэлементов.

Таким образом, в принципе необходимо только 5 рецепторов, чтобы прочесть буквы английского алфавита, поскольку их достаточно, чтобы различать 25 = 32 буквы, полагая, что у каждой буквы свое соотношение белого с черным, своя мера серости, которая уникальна. В общем, n является минимальным числом рецепторов, способных различать 2 n возможностей. Заметьте, что таким образом по мере увеличения числа возможностей получается впечатляющая экономия числа рецепторов. Десять рецепторов могут различать 210 = 1024 буквы или чего-то другого. Сорок рецепторов смогут различать 240, что больше миллиона миллионов. Такое число — чистая теория. Мы должны заметить, что на практике такое множество букв (или состояний, или картин нашего мира) не может быть точно различимым. Частично так происходит, поскольку пороги различия их серости становятся слишком близкими друг другу, чтобы использовать практически полезный инструмент их различения, а частично из-за того, что буквы невозможно напечатать с такой аккуратностью. Другими словами, нечеткость их контуров дает такую меру серости для одной буквы, которая точно соответствует тому, что есть у другой, которую нужно от нее отличить. Так мы подошли к проблеме разнообразия в пропускной способности канала связи как отличающейся от разнообразия на входе.

Мы можем начать обсуждение проблемы снижения разнообразия с другого конца. Сканирующая система телевидения располагает сотнями линий, и сотни разной яркости черных и белых точек передаются по каждой линии. В конечном счете для создания картинки на экране трубки должны использоваться десятки тысяч двоичных рецепторов. Подобно этому в каждом человеческом глазу содержится около миллиона двоичных рецепторов. Неудивительно тогда, что глаз или телевизионная трубка может различать 26 букв алфавита, поскольку, как было показано, для этого достаточно и пяти рецепторов. Из этого вытекает важное заключение: используя значительно большее число рецепторов, чем теоретически необходимо, мы фактически можем разобраться с невероятно большим числом неточностей на входе. Это аналогично нашему примеру о необходимости в двух посыльных для передачи единственного сообщения, хотя на этот раз речь идет о рецепторах, а не о каналах связи. Благодаря этому люди смотрят телевизионные передачи сравнительно спокойно и, конечно, с пониманием происходящего, когда изображение сильно искажено электрическими помехами. Аналогично и глаз спокойно читает исключительно плохой почерк. Так происходит потому, что у глаза достаточно рецепторов, чтобы различать миллионы букв, а не каких-нибудь 26, но если учесть все возможные алфавиты, включая буквы, написанные от руки, то, вероятно, и нам необходимо большинство этих рецепторов.

Разница между "да" и "нет", между 0 и 1 является элементом решения. Руководители могут уклониться от ответственности, давая двусмысленные или расплывчатые решения: если захотят, могут пробормотать что-то, чтобы отмахнуться, но когда дело доходит до серьезного, ответ всегда двоичен, фактически руководители всегда используют процесс дихотомической классификации (который был только что нами описан), но используют его совсем не формально. Проблема управления может решаться сотнями возможных способов, и руководитель может отказаться ее решать, сказав только, что, по его мнению, решение лежит на том, а не на этом конце шкалы возможных решений. Это звучит весьма неопределенно, но фактически он здесь разделил возможные решения на две группы, которые вполне могут быть неравными, оставляя границу между группами весьма не четкой. Подчиненные будут разбираться в этих группах в течение некоторого времени, производя действия, которые толкают ситуацию скорее в одном направлении, чем в обратном, пытаясь также избежать зоны перекрытия. Рано или поздно они достигнут такого положения, когда не будут знать, что делать дальше, но представят руководителю значительно суженный круг возможных решений.

14
{"b":"129071","o":1}