Противные высказывания (SaP и SeP), в отличие от противоречащих, могут вместе быть ложными, но не могут быть вместе истинными. Так, высказывания «Все спортсмены – гроссмейстеры» и «Ни один спортсмен не гроссмейстер» оба ложны. Поскольку высказывание «У всех людей есть головы» истинно, то высказывание «Ни у одного человека нет головы» ложно; и если высказывание «Все металлы не являются газами» истинно, то высказывание «Все металлы – газы» ложно.
Подпротивные высказывания (SiP и SoP) не могут быть одновременно ложными, но могут быть одновременно истинными. Так, если высказывание «Некоторые овцы – хищники» ложно, то высказывание «(По меньшей мере) некоторые овцы не являются хищниками» истинно. Высказывания же «Некоторые спортсмены – футболисты» и «Некоторые спортсмены не футболисты» оба истинны.
В отношении подчинения находятся попарно высказывания SaP и SiP, SeP и SoP. Из подчиняющего высказывания логически следует подчинённое: из SaP вытекает SiP и из SeP вытекает SoP. Это означает, что из истинности подчиняющего высказывания логически следует истинность подчинённого, и из ложности подчинённого следует ложность подчиняющего. К примеру, из высказывания «Все киты являются млекопитающими» следует высказывание «Некоторые киты млекопитающие», а из высказывания «Все металлы не являются сжимаемыми» следует высказывание «Некоторые металлы не сжимаемы».
Ещё раз подчеркнём, что противоречат друг другу высказывания «Все S есть Р» и «Некоторые S не есть Р» и высказывания «Все S не есть Р» и «Некоторые S есть Р». Высказывания же «Все S есть Р» и «Все S не есть Р», а также высказывания «Некоторые S есть Р» и «Некоторые S не есть Р» не противоречат друг другу.
Логические связи категорических высказываний, представляемые логическим квадратом, можно представить также в форме непосредственных умозаключений, т.е. умозаключений из одной посылки.
Противоречат друг другу высказывания «Все S есть Р» и «Некоторые S не есть Р», а также высказывания «Все S не есть Р» и «Некоторые S есть Р». Это означает, что являются правильными следующие, в частности, непосредственные умозаключения:
Все S есть Р.
Неверно, что некоторые S не есть Р.
Из высказывания «Все совы – птицы» непосредственно вытекает высказывание «Неверно, что некоторые совы не являются птицами».
Некоторые S не есть Р.
Неверно, что все S есть Р.
Из высказывания «Некоторые учёные не химики» непосредственно вытекает высказывание «Неверно, что все учёные химики».
Все S не есть Р.
Неверно, что некоторые S есть Р.
Из высказывания «Все киты не рыбы» непосредственно вытекает высказывание «Неверно, что некоторые киты – рыбы».
Некоторые S есть Р.
Неверно, что все S не есть Р.
Из высказывания «Некоторые жидкости упруги» непосредственно следует высказывание «Неверно, что все жидкости неупруги».
Противные высказывания (SaP и SeP) не могут быть вместе истинными.
Все S есть Р.
Неверно, что все S не есть Р.
Из высказывания «Все летающие имеют крылья» непосредственно вытекает высказывание «Неверно, что все летающие не имеют крыльев».
Все S не есть Р.
Неверно, что все S есть Р.
Из высказывания «Все категорические высказывания не являются условными» непосредственно вытекает высказывание «Неверно, что все категорические высказывания – условные».
Из подчиняющего высказывания логически следует подчинённое:
Все S есть Р.
Некоторые S есть Р.
Из высказывания «Все люди дышат лёгкими» непосредственно вытекает высказывание «(По меньшей мере) некоторые люди дышат лёгкими».
Все S не есть Р.
Некоторые S не есть Р.
Из высказывания «Все тигры не птицы» непосредственно вытекает высказывание «Некоторые тигры не птицы».
3. Категорический силлогизм
Категорический силлогизм (или просто: силлогизм) – это дедуктивное умозаключение, в котором из двух категорических высказываний выводится новое категорическое высказывание.
Логическая теория такого рода умозаключений называется силлогистикой. Она была создана ещё Аристотелем и долгое время служила образцом логической теории вообще.
В силлогистике выражения «Все… есть…», «Некоторые… есть…», «Все… не есть…» и «Некоторые… не есть…» рассматриваются как логические постоянные, т.е. берутся как единое целое. Это не высказывания, а определённые логические формы, из которых получаются высказывания путём подстановки вместо многоточий каких-то имён. Подставляемые имена называются терминами силлогизма.
Существенным является следующее традиционное ограничение: термины силлогизма не должны быть пустыми или отрицательными.
Примером силлогизма может быть:
Все жидкости упруги.
Вода – жидкость.
Вода упруга.
В каждом силлогизме должно быть три термина: меньший, больший и средний.
Меньшим термином называется субъект заключения (в примере таким термином является термин «вода»).
Большим термином именуется предикат заключения («упруга»). Термин, присутствующий в посылках, но отсутствующий в заключении, называется средним («жидкость»). Меньший термин обозначается обычно буквой S, больший – буквой Р и средний – буквой М. Посылка, в которую входит больший термин, называется большей. Посылка с меньшим термином называется меньшей. Большая посылка записывается первой, меньшая – второй. Логическая форма приведённого силлогизма такова:
Все М есть Р.
Все S есть М.
Все S есть Р.
В зависимости от положения среднего термина в посылках (является он субъектом или предикатом в большей и меньшей посылках) различаются четыре фигуры силлогизма. Схематически фигуры изображаются так:
По схеме первой фигуры построен силлогизм:
Все птицы (М) имеют крылья (Р).
Все страусы (S) – птицы (М).
Все страусы имеют крылья.
По схеме второй фигуры построен силлогизм:
Все рыбы (Р) дышат жабрами (М).
Киты (S) не дышат жабрами (М).
Все киты не рыбы.
По схеме третьей фигуры построен силлогизм:
Все бамбуки (М) цветут один раз в жизни (Р).
Все бамбуки (М) – многолетние растения (S).
Некоторые многолетние растения цветут один раз в жизни.
По схеме четвёртой фигуры построен силлогизм:
Все рыбы (Р) плавают (М).
Все плавающие (М) живут в воде (S).
Некоторые живущие в воде – рыбы.
Посылками и заключениями силлогизмов могут быть категорические суждения четырех видов: SaP, SiP, SeP и SoP.
Модусами силлогизма называются разновидности фигур, отличающиеся характером посылок и заключения.
Всего с точки зрения всевозможных сочетаний посылок и заключения в каждой фигуре насчитывается 64 модуса. В четырех фигурах 4 × 64 = 256 модусов.
Силлогизмы, как и все дедуктивные умозаключения, делятся на правильные и неправильные. Задача логической теории силлогизма – систематизировать правильные силлогизмы, указать их отличительные черты.
Из всех возможных модусов силлогизма только 24 модуса являются правильными, по шесть в каждой фигуре. Вот традиционно принятые названия правильных модусов первых двух фигур:
1-я фигура: Barbara, Celarent, Darii, Ferio, Barbari, Celaront;