Между тем, общий размер Солнечной системы не менее 200 тыс. астрономических единиц (порядка 1 парсека). Вплоть до таких расстояний Солнце должно оказывать основное гравитационное влияние на все объекты (на больших расстояниях в игру вмешиваются ближайшие звезды). Так вот, с этой точки зрения неплохо изученный объем составляет (40/200000)3 ~ 8.10-12 примерно одну стомиллиардную часть! За орбитой Плутона могут находиться десятки планет и целые астероидные пояса, более того что-то такое там непременно должно быть, поскольку высокоточная современная теория движения внешних планет (Урана, Нептуна, Плутона) и кометы Галлея все еще находится в неудовлетворительном согласии с наблюдениями. Одна или несколько неоткрытых трансплутоновых планет систематически действуют на параметры известных орбит*. Для поиска этих объектов нужно проводить систематические исследования заплутонова пространства на предельно мощных телескопах и в перспективе - с помощью космических зондов. В сфере этих поисков, возможно, кроются ответы на принципиальные проблемы космогонии, в частности, оценка размеров протозвездного облака**.
* Недавно появились сообщения об обнаружении долгожданной десятой планеты.
** Результаты, полученные с помощью инфракрасного телескопа на нидерландском спутнике IRAS, говорят о том, что вокруг Веги (звезды, которая примерно в 5 раз моложе Солнца и расположена в 8,5 пс от нас) существует облако довольно крупных твердых частиц (размер облака около 170 а.е.). Возможно, это первое прямое наблюдение протопланетного облака (начальной фазы планетной космогонии).
Итак, нарисованная картина может заметно измениться во многих деталях, но существуют и совсем иные точки зрения. Например, в течение многих десятилетий советский астрофизик В. А. Амбарцумян и его школа развивают представления, противоположные "пылевой космогонии". Их позиция основана на гипотезе образования космических структур из неких сверхплотных зародышей (сгустков так называемого дозвездного вещества). Структуры должны возникать в результате взрывообразной эволюции зародышей. Наблюдательной основой гипотезы служит высокая активность многих галактических ядер и относительно высокий темп звездообразования. Этот не слишком модный в наши дни подход сыграл важную роль, постоянно привлекая внимание к мощным нестационарным процессам во Вселенной. Однако в идее зародышей заложено несколько больше, чем может показаться. В широком плане речь идет о том, как и когда был дан стартовый выстрел для формирования структур в масштабах, промежуточных между Вселенной в целом и отдельными элементарными частицами. Начался ли этот процесс только после синтеза всех известных частиц, когда они представляли собой уже достаточно охлажденный газ, или он протекал параллельно и оставил после себя совершенно экзотические объекты, прячущиеся в труднодоступных для наблюдения местах типа галактических центров? Вспомним о тех же микрозвездах и реликтовых дырах...
Не исключено, что истина лежит где-то посредине и в очень ранних космогонических фазах активность реликтовых образований действительно крайне важна, а несколько позже основную роль начинают играть более или менее понятные процессы гравитационной конденсации холодного газопылевого вещества.
В любом случае, тем, кто посвятил или собирается посвятить себя космогоническим моделям, еще долго не грозит смерть от скуки.
ЭВОЛЮЦИЯ ЗЕМЛИ И ДРУГИХ ПЛАНЕТ
Рассмотрим теперь в самых общих чертах, как протекало формирование Земли. Наша планета дает уникальный пример успешного прохождения химической и биологической эволюции, и, конечно, очень интересно выяснить, насколько ход этой эволюции естественен. Иными словами, не возникают ли в ходе анализа какие-то крайне маловероятные факторы, делающие результаты земной эволюции предельно редким космическим событием?
По современным астрофизическим и геофизическим данным, Земля образовалась примерно 4,6 млрд. лет назад. Вещество, из которого состояло протоземное облако, наверняка сильно отличалось по составу от водородно-гелиевой смеси. Видимо, около 10 млрд. лет назад в области Солнечной системы началось интенсивное обогащение тяжелыми элементами. Неплохое представление о химическом спектре в районе земной орбиты дают метеориты, а среди них преобладают каменные и железные с примесями кислородо-связывающих веществ. Именно анализ метеоритов позволяет нам восстановить элементный состав протопланетного облака, каким оно было 4,5 5 млрд. лет назад.
Конденсация протопланетного вещества под действием сил тяготения ведет к образованию твердого и компактного тела, внутри которого развивается давление, препятствующее дальнейшему сжатию. Однако не слишком большая исходная масса позволяет достичь весьма умеренных температур в недрах планеты. В большей части своего объема она сохраняет кристаллическую структуру.
Основным процессом геологической эволюции является гравитационная дифференциация - процесс, в котором более тяжелые вещества опускаются к центру планеты, а более легкие поднимаются к поверхности. Из-за этого Земля оказалась, в конечном счете, весьма неоднородной по плотности (12,68 г/см3 в центре при средней плотности 5,52 г/см3).
Дифференциация ведет к потере потенциальной энергии опускающихся слоев и некоторому уменьшению радиуса планеты. Потенциальная энергия выделяется в тепловой форме во внутренних слоях. Полное энерговыделение этого источника оценивается примерно в 1,6.1031 Дж, что с учетом возраста Земли приводит к очень приличной средней мощности (порядка 1014 Ватт!). Из-за уменьшения радиуса должна несколько увеличиваться скорость вращения - чтобы момент количества движения сохранялся.
Другой важный источник земной энергии - распад радиоактивных элементов. Оценки показывают, что такой распад выделил порядка 56 % от энергии дифференциации. Очень важно, что в ранние моменты формирования Земли радиоактивные изотопы генерировали значительно большее (в 4-7 раз) количество энергии, чем теперь, и, конечно, то, что в процессе гравитационной дифференциации изотопы вместе с силикатами концентрировались в коре и верхней мантии.
Отсюда видно, что наша планета представляет довольно мощный энергетический источник, причем в первый период ее существования она была особенно активна. Много энергии, несомненно, рассеялось в космическом пространстве, но значительная часть ее сохранилась в недрах, что способствовало длительному поддержанию разогрева и плавлению вещества в значительных объемах*. Картина ранней Земли очень сильно отличалась от того, что мы наблюдаем сейчас, и особенно это касается состава атмосферы и коры.
* Современные данные показывают, что так называемое жидкое ядро Земли заключено в сферическом слое радиусом около 3,5 тыс. км, а внутри него находится твердое (или полурасплавленное) железоникелевое ядро радиусом 1250 км. Над жидким ядром располагается трехслойная мантия, выше - кора.
Первоначально основные элементы атмосферы и гидросферы Земли находились в связанном состоянии - в составе твердых веществ. Большая часть летучих веществ испарилась еще при нагревании протопланетного облака Солнцем. Поэтому процентное содержание легчайших элементов на Земле значительно меньше, чем в среднем по Солнечной системе.
Гравитационный и радиационный разогрев Земли быстро привел к развитию мощных вулканических процессов, формирующих как кору, так и атмосферу. Самая ранняя атмосфера состояла, по-видимому, из очень разреженной смеси азота, аммиака и инертных газов. Вулканы стали насыщать ее водяным паром, углекислым газом и некоторыми другими газами, выпаренными из верхней мантии. Одновременно шел процесс выплавления основных пород коры. Без учета парниковых эффектов температура поверхности древнейшей Земли оценивается градусов в 15, что допускает конденсацию водяных паров и образование гидросферы. Мировой океан с самого начала активно насыщался продуктами вулканической деятельности - примеси попадали в него из атмосферных газов и за счет интенсивного вымывания вещества из горных пород. Свободного кислорода ни в тонкой атмосфере, ни в океане на этом этапе практически не было.