Литмир - Электронная Библиотека
A
A

Все эти идеи довольно любопытны, однако главная проблема относится к строению микрозвезд. Один из очевидных подходов - аналогия с нейтронными звездами, иными словами, предположение о том, что микрозвезда состоит из холодного газа частиц, подобных нейтронам. Проблема, однако, в том, что эти частицы, супербарионы, чрезвычайно массивны - примерно в миллиард раз массивней нейтрона, и их поиск на ускорителях пока дело неблизкого будущего*.

* Все дело именно в массивности частиц, из которых состоит гипотетическая микрозвезда! Обычно полагают, что в очень ранней и горячей Вселенной не могут образовываться никакие многочастичные конденсации, кроме первичных черных дыр. Представление основано на том простом факте, что ультрарелятивистские частицы горячего бульона непременно убегут из любой конденсации, чей радиус превышает Rg. Это так, если предполагать, что вплоть до какого-то момента Вселенная состоит из одних только ультрарелятивистских частиц, чья кинетическая энергия много больше энергии покоя (фактически: кТ (mс2), т. е. начальная Вселенная является "чисто горячей". На самом деле даже в очень ранние моменты во Вселенной может присутствовать "холодная компонента" - небольшая доля достаточно массивных и потому относительно медленных частиц. Действительно, в момент t, когда температура Вселенной Т ~ v tP/t , частицы с массой покоя m ~ kT/c2 ~ mР v tP/t перестают быть ультрарелятивистскими - их кинетические энергии того же порядка, что и энергия покоя mc2. В пределах горизонта R ~ ct они могут конденсироваться в микрозвезду с массой М ~ (R3 ~ (P (tP/t)2(ct)3 ~ mР (tP/t) ~ mР3/m2. Такая микрозвезда представляет собой возмущение в среднем однородного фона плотности материи. В частности, при t ~ 10-23 с гипотетические супербарионы с m ~ 10-15 г могут формировать микрозвезды с М ~ 1015 г. Тепловые скорости супербарионов должны стать заметно меньше с, и для достаточно компактной микрозвезды - меньше критической скорости убегания. Разумеется, обрастать атмосферой из более легких частиц (и, например, формировать гравитационные атомы) такая микрозвезда сможет лишь много позже - при достаточном падении общей температуры.

Было бы любопытно выяснить - не является ли "холодная компонента" источником самых ранних возмущений плотности материи, начиная, быть может, с t ~ tP , когда способны формироваться микрозвезды планкеонного масштаба. Проблема "холодной компоненты", разумеется, будет решаться экспериментально - во-первых, необходимо искать частицы очень больших масс (на 10 и более порядков тяжелее протона), во-вторых, непосредственно искать реликты типа микрозвезд по их прямым и косвенным проявлениям, имея в виду, что относительные концентрации этих объектов могут быть крайне малы.

Один из примеров образования реликтовых конденсаций за счет описанного механизма уже известен, хотя он и относится к сравнительно холодным эпохам. Речь идет о формировании облаков из реликтовых нейтрино с ненулевой массой покоя при t ~ tP(mР/m?)2 ~ 1010 с ~ 300 лет. В эту эпоху (Т~105К) нейтрино с m? ~ 30 эВ уже не ультрарелятивистские. Масса нейтринного облака М ~ mР3/ m?2 ~ 1015 г, а начальный радиус R ~ lP(mР/ m?)2 ~ 100 пс. Такая гигантская конденсация, как мы увидим в гл. 9, Должна играть определяющую роль в формировании самых крупных структурных единиц Вселенной - сверхскоплений галактик.

Но уж если фантазировать, так до конца!

Опять-таки проблема микрозвезд толкает нас к планковской области. Попробуем подумать, какой может быть предельно малая звезда?

Очень интересная оценка возникает при попытке сконструировать звезду из холодного газа частиц, каждая из которых эквивалентна самой звезде. Оказывается, такой самозашнурованный объект будет состоять из планкеонов и сам будет планкеоном.

Не сшиваются ли таким образом две вроде бы совершенно несопоставимых группы космического населения - элементарные частицы и звезды? Не является ли планкеон одновременно чем-то вроде минимальной звезды и максимальной частицы?

Должно быть, мы достаточно углубились в сферу мысленных конструкций, не имеющих под собой пока ни одного экспериментального факта. Однако в данной ситуации путешествие по многообразным и скользким путям воображения кое-чем оправдано. На горизонте маячит принципиально новая ветвь астрофизики, тесно переплетенная с грядущими исследованиями поведения вещества в совершенно необычных условиях. Мы ощупываем этот горизонт лучами своих весьма несовершенных аналогий, но даже в столь примитивном освещении вырисовывается нечто крайне привлекательное.

Открытие реликтовых структур типа микрозвезд или каких-то явных следов их существования в ранней Вселенной стало бы одним из мощнейших революционизирующих толчков в истории естествознания. Мало того, что само по себе оно дало бы новую сферу исследований, оно послужило бы и важнейшей опорной точкой для броска в планковскую область, в зону Первовзрыва.

Возможность сшить два мира - звезд и элементарных частиц - кажется чем-то сказочным, однако тот, кто посчитает эту идею пределом фантастики, разочаруется очень скоро - уже в следующем разделе мы столкнемся с не менее эффектными гипотезами.

АНТРОПОГЕННЫЙ ПРИНЦИП

Хорошая физическая теория должна, исходя из очень небольшого круга фундаментальных положений, выводить конкретные предсказания, в частности, объяснять численные значения наблюдаемых характеристик окружающего мира. Речь идет о массах, временах жизни, светимостях, частотах и т.д.

С большинством таких задач современная физика справляется довольно успешно. Например, мы знаем, что характерная частота переходов в атоме водорода, полностью нормирующая его спектр, легко выражается через постоянную Планка, заряд и массу электрона - это так называемая постоянная Ридберга (R? = mee4/2 h2). Характерная масса звезды типа Солнца с точностью до несущественного числового множителя оценивается комбинацией трех мировых констант и массы протона (M~ (hc/G)3/2 mp-2 ~ (mP3/mp2)), то есть удобно выражается через планковскую массу. Нечто похожее имеет место и в других случаях - все в порядке, если наблюдаемые параметры объектов и процессов выражены через некий минимальный набор констант.

В этот набор сейчас включены и величины, которым, может быть, там не место. Многие физики убеждены, что более общая теория даст методы расчета спектра масс элементарных частиц, и массы электрона и протона будут выражены через какие-то более фундаментальные вещи, например, через планковскую массу. Не исключено, что найдутся в такой общей теории и идеи, позволяющие вычислять заряд электрона и другие константы взаимодействия. Было бы, конечно, здорово свести все и вся к комбинациями трех мировых констант h, с, G или, что то же самое, к планковским единицам. Но пока приходится опираться на достигнутое, и реалистический минимальный набор, наряду с фундаментальной тройкой, включает массы и константы взаимодействия элементарных частиц.

Общая теория имеет шанс еще долго пробыть предметом веры, но в связи с ее предполагаемым появлением есть и несколько пессимистические точки зрения. Честно говоря, в области известных ныне элементарных частиц не видно параметра с размерностью массы, который позволил бы объяснить весь спектр наблюдаемых масс. И не так-то легко поверить в существование одного параметра, который (подобно константе Ридберга в атомной физике) даст единую нормировку массового спектра в огромном интервале от нейтрино до самых тяжелых адронных резонансов. Что же касается стратегии дальнего прицела, например, использования планковской массы, то по нынешнему физико-математическому кругозору кажется маловероятным, чтобы какая-то теория уверенно вычисляла потрясающе малые безразмерные константы отношения масс обычных элементарных частиц к массе планкеона (скажем, для протона mр/mР = 10-19!).

Если даже предположить, что программа такого рода будет выполнена, и все известные массы частиц и константы связи выстроятся из фундаментальной тройки, то останется и такой вопрос: как объяснить тройку, или, по-другому, откуда берется планковский набор {lP, tP, mP}?

74
{"b":"124111","o":1}