Как мы уже говорили, поразительной чертой постмодернистского научного знания является имманентность самому себе (но эксплицитная) дискурса о правилах, которые его узаконивают188. То, что в конце XIX века могло проходить за утрату легитимности и сползание в философский "прагматизм" или логический позитивизм, было только эпизодом, где знание отмечалось включением рассуждений об обосновании высказываний, считавшееся законом, в научный дискурс. Такое включение, как мы уже видели, это не простая операция: она дает место "парадоксам", воспринимаемым как в высшей степени серьезные, и "пределам" значимости знания, являющимся в действительности модификациями его природы.
_____________
187 Известный пример этому дает дискуссия о детерминизме, возникшая вокруг квантовой механики. См., например, переписку М. Берна с А. Эйнштейном (1916 1955), опубликованную Ж.М. -Леви-Леблондом (Levy-Leblond J.M. Le grand debat de la mecanique quantique // La recherche. - ?20, fevrier 1972. R 137-144). История гуманитарных наук на протяжении целого века пестрит пассажами антропологического дискурса на уровне метаязыка.
188 В работе И. Хассана "Культура, неопределенность, имманентность" дается описание" того, что он называет "имманентность".
постмодернистская наука как поиск нестабильности 133
Математическое исследование, закончившееся теорией Г+деля, служит настоящей парадигмой такого изменения природы знания189. Но не менее показательна в аспекте нового научного духа трансформация динамики. Она интересует нас особо, поскольку обязывает скорректировать понятие, широко введенное в дискуссию о продуктивности, особенно, в области социальной теории. Речь идет о понятии системы.
Идея продуктивности подразумевает идею очень стабильной системы, поскольку она покоится на основе отношения, а отношение, в принципе, всегда поддается расчету: между теплотой и работой, между теплым и холодным источниками, между входом и выходом. Эта идея идет от термодинамики. Она сочетается с представлением об ожидаемой эволюции рабочих характеристик системы, при условии, что известны все ее переменные. Это условие сформулировано явным образом как ограничение фикцией "демона" Лапласа190; имея в распоряжении все переменные, определяющие состояние мира в момент t, можно рассчитать ее состояние в момент t'>t. Это изображение поддерживается принципом, что физические системы, включая систему систем - универсум, подчиняются закономерностям, которые в результате их эволюции могут обозначить предполагаемую траекторию и делают возможными непрерывные "нормальные" функции (и прогнозирование).
Квантовая механика и атомная физика ограничивают распространение этого принципа. И делают это двумя способами, соответствующее применение которых дает неравнозначный эффект. Прежде всего опре
_________
189 См. прим. 142.
190 Лаплас П.С. Изложение системы мира. (1796)
134 Ж.-Ф. Лиотар
деление исходного состояния системы, т. е. всех независимых переменных: если мы хотим, чтобы оно [определение] было действенным, то нам придется затратить энергии по меньшей мере столько же, сколько потребляет искомая система. Ненаучная версия такой невозможности на деле осуществить полное измерение состояния системы дана в замечании Борхеса. Император хочет составить абсолютно точную карту империи, а в результате получает крушение страны: все ее население отдало всю свою энергию картографированию191.
Идея (или идеология) абсолютного контроля над системой, который должен улучшать ее результаты, с аргументацией Бриллюэна192 показала свою несостоятельность в отношении противоречия: он понижает результативность, хотя заявляется обратное. Эта несостоятельность объясняет, в частности, слабость государственных и социо-экономических бюрократий: они душат контролируемые ими системы или подсистемы и задыхаются вместе с ними (отрицательный feedback), Такое объяснение интересно тем, что ему не нужно прибегать к какой-либо легитимации, отличающейся от легитимации системы, например, к легитимации свободы человеческих индивидов, настраивающей их против излишней авторитарности. Допуская, что общество является системой, нужно понимать, что контроль над
__________
191 О строгости науки см.: Borges. Histoire de 1'infamie. Monaco: Rocher, 1951. Замечание, о котором идет речь, Борхес приписывает Суаресу Миранде (Mimnda Suarez. Viajes deVarones Prudentes. Lerida, 1658. V. IV. P. 14.). Приведенная нами выдержка не совсем точна.
192 Информация сама по себе стоит затрат энергии: отрицательная энтропия (т. е. потенциальное увеличение энергетики), которую она устанавливает, порождает энтропию. Мишель Серр часто использует этот аргумент, например, в работе "Гермес III." (Serres M. Hermes III. La traduction. Paris: Minuit, 1974. P. 92).
постмодернистская наука как поиск нестабильности 135
ним, подразумевающий точное определение его изначального состояния, не может быть действенным, поскольку это определение невозможно.
Это ограничение может лишь снова поставить под сомнение эффективность точного знания и вытекающей из него власти. Их принципиальная возможность сохраняется неизменной. Однако для познания систем классический детерминизм продолжает оставаться ограничением - неприступным, но понятным193.
Квантовая теория и микрофизика заставляют более радикально пересмотреть представление о непрерывной и прогнозируемой траектории. Препятствия, с которыми сталкиваются точные исследования, связаны не с их дороговизной, но с природой материи. Неправда, что недостоверность, т. е. отсутствие контроля, сокращается по мере роста точности: она тоже возрастает. Жан Перрон предлагает в качестве примера измерение истинной плотности (частное отделения массы на объем) воздуха, содержащегося в шаре. Она значительно колеблется, когда объем шара изменяется от 1000 м3 до 1 м3, и очень мало - когда объем шара меняется от 1 см3 до 1 /1000mc мм3; но можно уже наблюдать в этом интервале появление колебаний плотности порядка миллиардных долей, которые появляются нерегулярно. По мере того, как объем шара сокращается, значение этих колебаний возрастает: для объема порядка 1/10mc кубического микрона колебания достигают порядка тысячных долей, а для 1/100mc кубического микрона - порядка одной пятой доли.
_______
193 Мы придерживаемся здесь позиции Пригожина и Стенгерса: Prigogine I. Stengers I. La dinamique, de Leibniz a Lucrece // Critique. ?380 (numero special Serres), janvier 1979. P. 49.
136 Ж.-Ф. Лиотар
Сокращая объем дальше, доходят до порядка радиуса молекул. Если шар оказывается в вакууме между двумя молекулами воздуха, то истинная плотность воздуха в нем равна нулю. Однако примерно в одном случае из тысячи центр такого "шарика" оказывается внутри молекулы, и тогда средняя плотность в этой точке сравнима с тем, что называют истинной плотностью газа. А если мы спустимся до внутриатомных размеров, то наш "шарик" имеет вероятность оказаться в вакууме, где плотность снова будет нулевой. Тем не менее, в одном случае из миллиона его центр может попасть на оболочку или на ядро атома, и тогда плотность будет во многие миллионы раз выше плотности воды. "Если шарик сожмется еще..., то, вероятно, средняя плотность снова станет и будет оставаться нулевой, также как и истинная плотность, за исключением тех очень редких положений, где ее значение колоссально выше, чем в предшествующих измерениях"194.
Знание касательно плотности воздуха, таким образом, разложилось на множественные совершенно несовместимые высказывания; они могут стать совместимыми только при условии их релятивизации в отношении шкалы, выбранной тем, кто формулирует высказывание. С другой стороны, при некоторых шкалах, высказывание данного размера не может сводиться к простому утверждению, а только к модальному, типа: "правдоподобно, что плотность равна нулю, но не исключено, что она будет равна 10n, где n может принимать высокие значения".
________
194 Perrin J. Les atoms (1913). Paris: PUF, 1970. P. 14-22.Этот текст Мандельброт дал в Предисловии к "Фрактальным объектам".