Литмир - Электронная Библиотека
A
A

В VIII в. в Персии и Ираке появляются ветряные мельницы различной конструкции. Имеются сведения о мельницах с ветряным колесом, лежавшим в горизонтальной плоскости; вертикальный вал вращал подвижной жернов.

В ІХ ст. в Самарканде было изобретено производство бумаги из тряпья, и на длительное время этот город стал центром бумажных фабрик.

Прикладная механика в арабоязычных странах пополнилась новыми знаниями, так сказать, получила значительное приращение. Особенно увеличились познания в строительной механике и гидравлике; значительного развития достигла техника построения мельниц и военных машин.

Мировое значение науки арабоязычных стран состояло в том, что она сохранила и творчески развила науку, унаследованную от Греции и эллинистических стран, а также ввела в научный оборот результаты творчества индийских ученых. Это наследие в области математики и механики различными путями было передано в Западную Европу. Одним из первых познакомил Западную Европу с арабской математикой бенедиктинский монах Герберт Ориллакский (ок. 938-1003), в последствии папа Сильвестр ІІ. Кстати, ему приписывают также изобретение механических часов. Но, возможно, это изобретение было сделано раньше, в халифате, поскольку арабоязычные ученые серьезно занимались изучением эллинистических и византийских трудов по автоматам. Есть сведения, что Карл Великий (786-814) в свое время получил часы в подарок от халифа Гаруна ар-Рашида.

Развитие механики в Западной Европе в течение 1000 лет происходит двумя различными путями. Знания механически развивают практики, которым приходится сооружать здания и мосты, создавать военные орудия. Так, развивается практическая механика, которая только в конце рассматриваемого периода получает литературное оформление. Механикой как наукой занимаются ученые, которые преподают в школах: этот путь теоретической механики подобен тому, как в Греции между философами-теоретиками и механиками-практиками не существовало взаимного доверия, так и здесь между учеными-схоластами и практиками-инженерами и архитекторами не заметно согласия. Каждый работает для себя и редко одни считаются с опытом или знаниями других.

Средневековая школа пришла на смену римской с кругом знаний, заимствованных от этой последней. Делаются попытки как-то систематизировать их. Первой попыткой внести некоторый порядок в круг знаний, связанный с потребностями школы, была систематика позднеримского философа и математика Аниция Северина Боеция (ок. 470-525), который разделил науки на гуманитарные и математические, так называемые тривиум и квадривиум. В тривиум входили грамматика, риторика и диалектика, в квадривиум – арифметика, музыка, геометрия и астрономия (Грамматика – говорит, Диалектика – учит словом, Риторика – упрощает речь; Музыка – поет, Арифметика – считает, Геометрия – взвешивает и измеряет, Астрономия – считает звезды). Несмотря на то, что механикой иногда занимались в школах, в список наук она не попала так как до ХVIII в. в системе школьных знаний механика относилась к математике.

Таким образом, еще в эпоху в эллинизма ученые начинают заниматься многими сторонами механики, в частности, статикой. Ученые же раннего средневековья уже не удовлетворяются изучением равновесия тел: их интересует также, а может быть, еще в большей степени - движение тел. При этом они различают геометрию движения, кинематику и движение под действием сил - динамику.

В Ы В О Д Ы

В эпоху палеолита и неолита человек начинает приобретать определенные знания и умения, связанные с использованием рычага и клина, использованием технологий обработки камня, его применения в качестве метательного орудия, наблюдением за его полетом, что приводит к изобретению пращи, лука со стрелами.

Позднее стремление осознать явления природы приводит к мифотворчеству, зарождению знаний и становлению науки, начинается государственно-культовое строительство, которое говорит о том, что люди уже владеют зачатками механики.

С появлением письменности активизируется процесс зарождения науки. Это освобождает человеческую память от тяжелого груза знаний и положительно влияет на их дальнейшее развитие. До начала VI в. до н.э. люди имеют познания в области строительной механики, гидравлики, статики, динамики и небесной механики. Все эти элементы практической механики послужили базой становлении механики как науки в дальнейшем.

Раннее средневековье характеризуется тем, что прикладная механика пополняется новыми знаниями, в частности, в области строительной механики и гидравлики, особенно в арабоязычных странах, где не только развивается наука, унаследованная от Греции, но и идет процесс ее приращения, особенно в области теоретической механики в школах.

Тема ІІІ. РАЗВИТИЕ МЕХАНИКИ КАК НАУКИ –

УСЛОВИЕ УСПЕШНОЙ ИНЖЕНЕРНОЙ ДЕЯТЕЛЬНОСТИ

Развитие производительных сил в эпоху средневековья и позднее проходило несколько этапов. В раннем средневековье (V – середина ХІ в.) – период становления феодального строя, некоторого развития науки, техники, а следовательно, и инженерной деятельности – они находились на низком уровне; во время классического средневековья (ХІ–ХV вв.) – период расцвета феодализма – производительные силы начинают всесторонне совершенствоваться, бурно идет накопление знаний в области механики как основы инженерной деятельности. Особенно инженерная деятельность активизируется с ростом городов, появлением ремесленных цеховых производств. Для позднего средневековья (XVI – первая половина XVII в.) характерны процессы разложения феодализма, зарождения мануфактурного производства и капиталистических отношений, становления науки, в том числе и механики.

Рассмотрение различных аспектов накопления и расширения знаний в области механики как науки и использование их в практической деятельности является целью настоящей лекции.

1. Развитие научных знаний и создание условий для научной революции.

2. Развитие механики как науки.

Быстрое развитие феодальных отношений в эпоху средневековья, особенно начиная с ХІІ–ХІІІ вв. и позднее вызвало интерес к науке, технике, особенно к военной. Это объясняется ростом городов, замков, требующих мощной защиты, создания метательных машин (бриколь – для метания стрел; франдибола – для метания камней), подвижных устройств (аркобаллисты, смонтированные на колесной раме). Подобные изобрения в определенной степени стали возможными благодаря активизации инженерной деятельности, увеличению количества людей, занимающихся этой деятельностью.

Огромное значение в ХIV в. имело использование пороха в Европе. С этого времени начинается эра огнестрельной артиллерии, развития металлургической промышленности и расширения знаний в области таких наук, как баллистика, динамика и др.

Уже в ХIII в. ученые начинают активно интересоваться вопросами динамики. Развивается идея Иоанна Филопона о том, что сила, бросившая тело, передается этому телу. Ученые-схоласты путем рассуждения, а иногда и наблюдения приблизились к пониманию множества механических явлений. Учение об импетусе предложил французский ученый Жан Буридан, бывший одно время ректором Парижского университета. Оно заключалось в следующем: движущее тело получает от движителя импетус – определенную силу, которая может двигать его в том направлении, в каком его движет движитель. Чем большей будет скорость, с которой брошено тело, тем сильней будет приданный ему импетус. Именно импетус движет камень после того, как движение толчка прекратилось, но вследствие сопротивления воздуха и из-за тяжести, которая побуждает камень двигаться в сторону, противоположную импетусу, последний непрерывно ослабляется, иначе движение не прекратилось бы никогда. В конце концов импетус преодолевается, и тяжесть, воздействуя на камень, приводит его к «естественному местоположению». По Буридану, импетус пропорционален плотности и объему тела, к которому он приложен.

13
{"b":"120365","o":1}