Рис. 11. Кристаллы алюмокалиевых квасцов, выращенные на станции «Салют-5» (а — образцы из кристаллизатора № 1; б — из кристаллизатора № 2; в — из кристаллизатора № 3)
Исследования доставленных из космоса кристаллов показали также, что в них не наблюдается полосчатости, характерной для земных условий и свидетельствующей о колебаниях скорости роста. Этот результат может быть следствием отсутствия конвекции в растворе в космических условиях.
Источником газово-жидких включений в кристаллах являются, очевидно, пузырьки газа, растворенного в жидкости и выделяющегося на фронте кристаллизации. Пузырьки газа захватываются растущим кристаллом и вызывают захват жидкого раствора. Используя в последующих экспериментах обезгаженные растворы, можно будет выращивать в космосе кристаллы, не содержащие таких включений. Сростки кристаллов, наблюдавшиеся в кристаллизаторе № 2, в котором процесс кристаллизации продолжался около полугода, видимо, обусловлены взаимным притяжением кристаллов, растущих в объеме жидкости в течение длительного времени.
Особенности роста кристаллов из расплава также исследовались на примере германия также в эксперименте, проведенном во время полета кораблей «Союз» — «Аполлон». Исследуемые образцы размещались в ампулах, которые устанавливались в электронагреаную печь, где германий подвергался частичному плавлению с последующим затвердеванием в режиме программированного охлаждения со скоростью 2,4 град/мин. Для экспериментального определения скорости роста кристалла каждые четыре секунды проводились метки поверхности раздела фаз путем пропускания через расплав коротких импульсов электрического тока. При послеполетной обработке образцов эти метки были выявлены и по ним была измерена скорость роста кристалла, составившая в конце периода охлаждения около 10–3 см/с. В контрольных экспериментах, поставленных на Земле, эта скорость оказалась приблизительно такой же. Этот результат означает, что как в космосе, так и на Земле теплообмен в расплаве определялся для данного случая, главным образом теплопроводностью, а роль конвекции пренебрежимо мала. Кристаллы, полученные в космосе, были значительно крупнее тех, которые удалось вырастить на Земле в такой же установке.
В эксперименте, который был осуществлен также в рамках программы «Союз» — «Аполлон», изучался рост кристаллов из паровой фазы. Кристаллы типа германий — селен — теллур росли в запаянных ампулах, которые устанавливались в зону с перепадом температуры электронагревной печи. Эксперимент показал, что доставленные из космоса кристаллы более совершенны, чем контрольные образцы, полученные на Земле (более высокая однородность, меньше дефектов кристаллической решетки и т. д.). Одновременно было установлено, что вопреки теоретическим ожиданиям скорость переноса массы превышает величину, рассчитанную в чисто диффузионном приближении, но меньше значения, полученного в контрольных экспериментах на Земле, где значительную роль играла конвекция. Этот результат еще требует теоретического объяснения.
Таким образом, выполненные в космосе эксперименты по выращиванию кристаллов из растворов, расплавов и из паровой фазы показали, что в космических условиях можно получить кристаллические материалы, обладающие более высоким совершенством и однородностью. Вместе с тем установлено, что ряд экспериментально наблюдаемых особенностей роста кристаллов в невесомости не получил пока необходимого теоретического освещения и нуждается в дальнейшем исследовании.
Бесконтейнерное затвердевание в невесомости. Процессы формообразования жидких тел и их затвердевания в условиях, когда на них не действует сила веса, имеют свои особенности. Во-первых, предоставленная в этих условиях самой себе жидкость стремится, как известно, принять форму шара. Однако в действительности при затвердевании жидкости возникает ряд эффектов, усложняющих процесс сфероидизации: свободные колебания объема жидкости, различная скорость остывания жидкости на поверхности и в объеме и т. д. Во-вторых, сами процессы затвердевания и кристаллизации такой жидкости в невесомости также могут протекать по-иному. Прежде всего это касается конвекции, которая в земных условиях сглаживает колебания температуры в расплаве и способствует устойчивости процесса кристаллизации. В-третьих, в случае многокомпонентных сплавов отсутствие тяжести может повлиять на перераспределение компонентов внутри жидкости, а тем самым и на однородность образца.
Совокупность этих вопросов исследовалась в экспериментах на станции «Скайлэб», а также в эксперименте с прибором «Сфера» на станции «Салют-5». В первом из этих экспериментов заготовки из чистого никеля или его сплавов плавились под действием электронного пучка, а затем охлаждались, свободно плавая в вакуумной камере на борту станции «Скайлэб». Наземные исследования полученных образцов показали, что отклонение их формы от сферической составляет около 1 %, а образцы, приготовленные из сплавов, содержат внутренние поры. Цель другого эксперимента состояла в получении в невесомости материалов с однородной пористостью путем переплава серебряных сеток. Таких материалов американским ученым получить не удалось, зато при переплавке в ампулах тонких серебряных сеток наблюдалась сфероидизация жидких капель серебра. Наземные исследования той части затвердевших капель, которые не имели при остывании контактов со стенками ампулы, показали, что их форма далека от совершенства. Поверхность образцов покрыта сеткой желобков, а в их объеме имеются усадочные раковины[5]. Внутренняя структура образцов носила ячеистый характер. Можно предполагать, что именно ячеистое затвердевание и образование раковин помешали образованию более правильных сфер в условиях, близких к невесомости.
С целью получения новой информации о процессах, сопровождающих бесконтейнерное затвердевание жидкого металла на станции «Салют-5», был поставлен эксперимент с прибором «Сфера». В качестве исследуемого вещества был выбран эвтектический сплав Вуда, обладающий минимальной температурой плавления (около 70 °C) и позволяющий поэтому свести к минимуму потребление электроэнергии (10 Вт). Химический состав исследованного сплава (по весу): висмут — 40, свинец — 40, кадмий — 10, олово — 10 %. Прибор «Сфера» представлял собой электрический нагреватель, внутри которого расплавлялась исследуемая заготовка массой 0,25 г, которая затем с помощью штока выталкивалась в лавсановый мешок. Внутри этого мешка отливка охлаждалась и затвердевала, не приходя в соприкосновение со стенками. Время, в течение которого заготовка, помещенная в нагреватель, разогревалась до температуры плавления, составляло на Земле 30 с. В невесомости контакт между заготовкой и стенками нагревателя должен ухудшаться, поэтому время разогрева образца было увеличено до 2 мин.
Доставленный после завершения экспериментов на Землю образец имел эллипсоидальную форму, а его поверхность была покрыта хаотически расположенными волокнами (по свидетельству космонавта В. М. Жолобова, образец имел вид ежа). Как показал анализ, внутренняя структура образца вследствие переплава в космосе также сильно изменилась: нарушилось равномерное распределение компонентов сплава по объему, образовались различающиеся по химическому составу иглообразные кристаллики и т. д. Вероятная причина этих изменений состоит, видимо, в особенностях теплового режима расплава при его затвердевании в условиях бесконтейнерного удержания. Попытки подобрать в лабораторных условиях такой тепловой режим обработки заготовки из сплава Вуда, который привел бы к сходной структуре отливки, не дали положительного результата, очевидно, потому что на Земле невозможно воспроизвести бесконтейнерное удержание образца.
Таким образом, выполненные к настоящему времени исследования в области физических основ космического производства, включая опыты, проведенные на различных космических аппаратах, подтвердили правильность общих представлений об особенностях физических процессов в невесомости и дали непосредственные экспериментальные доказательства возможности получения в космосе материалов с улучшенными характеристиками. Вместе с тем эксперименты показали недостаточность существующих количественных теорий этих процессов и выявили необходимость проведения специальных исследований, направленных на развитие теоретических основ производства в космосе новых материалов.