Литмир - Электронная Библиотека

Формальные методы разработки это тема специального большого разговора. Здесь же в качестве примера формального подхода, имеющего промышленные перспективы, упомянем только «B-Method»,[11] получивший недавно широкое паблисити в связи с созданием ПО для автоматического управления движением на одной из линий парижского метро. Разработчик метода Жан-Раймон Абриал (J.-R. Abrial), до того известный как создатель формального метода Z (вошедшего в учебные программы всех уважающих себя университетов), использовал идеи таких классиков, как Эдсгар Дийкстра (E.W.Dijkstra) и Тони Хоар (C.A.R.Hoare).

Важно, что основанная на формализмах методология поддержана практической инструментальной средой разработки Atelie B (которая, кстати, не единственная).

Эта среда включает в себя инструменты для статической верификации написанных на B-коде компонентов и для автоматического выполнения доказательств, автоматические трансляторы из B-кода в Си и Ада, повторно-используемые библиотеки B-компонентов, средства графического представления проектов и генерации документации, гипертекстовый навигатор и аниматор, позволяющий в интерактивном режиме моделировать исполнение проекта из спецификации, и, наконец, средства по управлению проектом. При разработке ПО для метро, включавшего около 100 тысяч строк B-кода (что эквивалентно 87 тыс. строк на Ада) пришлось доказать около 28 тысяч лемм. Насколько этот подход (и аналогичные ему) будет востребован практикой, покажет будущее.

И все же, такого рода верификация все равно не способна решить все проблемы, в частности, потому, что требуется специфицирование «корректного поведения» программной системы на формальном математическом языке, а это может быть очень непросто. К тому же, источник многих потенциально опасных ошибок может быть не связан непосредственно с вычислительными и алгоритмическими аспектами. Например, в 1992 г. большой резонанс получил произошедший в Англии случай, когда «пошел в разнос» компьютер на станции скорой помощи: причина неожиданно проявившиеся трудности с синхронизацией процессов в условиях большого количества поступивших заявок.

О «надежном» ПО

Теперь о менее очевидном мифе, который звучит так: программно-аппаратные системы обеспечивают заведомо большую надежность по сравнению с теми традиционными (например, электро-механическими) приборами, которые они заменяют.

Понятно, что аппаратные системы способны выдать случайный сбой, могут неправильно реагировать на изменившиеся условия окружающей среды и со временем изнашиваются. К тому же управление ими критически зависит от «человеческого фактора». А вот программное обеспечение ничему этому вроде бы не подвержено, а значит уже поэтому возложение на него функций, до того реализуемых на аппаратном или «операторном» уровне, уменьшает риски и повышает безопасность. И с этим очень хотелось бы согласиться, вот только рассмотренные частные случаи не позволяют вероятность систематических проектных ошибок даже в программных разработках, выполняемых высококвалифицированными коллективами для требовательных заказчиков, совсем ненулевая.

В конце 80-х гг. такая влиятельная в оборонных кругах организация как British Royal Signals and Radar Establishment сделала попытку оценки распространенности дефектов в ПО, написанном для ряда очень ответственных систем. Оказалось, что «до 10 % программных модулей и отдельных функций не соответствуют спецификациям в одном или нескольких режимах работы».[12]

Такого рода отклонения были обнаружены даже в ПО, прошедшем полный цикл всестороннего тестирования. Хотя большинство обнаруженных ошибок были признаны слишком незначительными, чтобы вызвать сколь-либо серьезные последствия, все же 5 % функций могли оказывать разного рода значимое негативное воздействие на поведение всей системы. Примечательно, что среди прочего авторы исследования особо упомянули выявленную в одном из модулей неназванной системы потенциальную возможность переполнения в целой арифметике, что могло привести к выдаче команды приводу повернуть некую установку не направо (как следовало), а налево. Достаточно предположить, что речь в ПО шла об управлении ориентацией пусковой ракетной установки, чтобы представить возможные последствия.

Коварство программных ошибок и в том, что они могут проявиться далеко не сразу, иногда после сотен тысяч часов нормальной эксплуатации как реакция на вдруг возникшую специфическую комбинацию многочисленных факторов. Так, установка Therac-25 вполне корректно работала в течение нескольких лет до первого переоблучения; и последующие зафиксированные инциденты происходили спорадически в течение 2.5 лет на общем «нормальном» фоне. NASA инвестировала огромные средства и ресурсы в верификацию и сопровождение программного обеспечения для космических кораблей Shuttle. есмотря на это, за 10-летие с 1980 г. времени начала использования ПО выявлено 16 ошибок «первой степени серьезности» (способных привести к «потере корабля и/или экипажа»). Восемь из этих ошибок не были обнаружены своевременно и присутствовали в коде во время полетов, хотя, к счастью, без последствий.

Зато во время полетов были задокументированы проблемы, возникшие от проявившихся 12 значимых ошибок, из которых три относились ко «второй степени серьезности» («препятствуют выполнению критически важных задач полета»). А ведь NASA имеет, может быть, самую совершенную и дорогостоящую комплексную систему процессов разработки и верификации ПО.

В то время как надежность аппаратуры может быть увеличена за счет ее дублирования, что резко нивелирует опасности от случайных сбоев, эквивалентного способа защиты от систематических программных ошибок не найдено (даже если некоторые вендоры, с подачи оторванных от практики исследователей, рекламируют методики и инструментарий, позволяющие разрабатывать «zero-defect software»). Впрочем, если бы методы производства идеального ПО существовали, то резонно предположить, что следование им потребовало бы нереалистично большого количества ресурсов и времени.

Повсеместно, в том числе и при создании ответственных систем, наблюдаемая тенденция свидетельствует о движении в обратном направлении в сторону снижения издержек, и стоимостных, и временных.

Наконец, как ни парадоксально это звучит, даже если бы компьютерные системы действительно были надежнее «традиционных», то это вовсе не обязательно означает, что они обеспечивают большую безопасность. Дело в том, что надежность ПО традиционно определяется степенью его соответствия зафиксированным в спецификациях требованиям; однако, часто бывает так, что ПО делает именно то, что ему и было предписано, и авария Ariane 5 классический тому пример: и злополучное вычисление посторонней для полета величины горизонтального отклонения Инерциальной Платформы, и реакция на него вплоть до выведения из строя всех навигационных систем и бортовых компьютеров все это случилось в полном соответствии с Требованиями, которые были частично унаследованы от Ariane 4 и не отражали новых реальностей.

Более того, по сравнению с ошибками в коде именно спецификационные ошибки обычно ведут к более тяжелым последствиям компетенции разработчиков ПО недостаточно для обнаружения таких ошибок. Программный комплекс сложная система, однако реальный мир, отражаемый в спецификационных требованиях еще более сложен и требует специальных экспертных знаний. Так что надежность ПО и его безопасность понятия, хотя и перекрывающиеся, но не идентичные.

Фактически любая сложная программная система при определенных обстоятельствах способна вести себя неожиданно для разработчиков и/или пользователей. Вероятность такого поведения, особенно если оно может привести к тяжелым последствиям, следует реалистически оценивать и предусматривать специальные средства защиты, в том числе уже не на уровне самого ПО, а на уровне всей системы. Собственно, авария с Ariane 5 продемонстрировала это в полной мере: реагируй система на выброшенное исключение не столь радикально, аварии бы не произошло ведь сам полет проходил нормально, но этот «глобальный контекст» просто не принимался во внимание!

вернуться

11

J.-R. Abrial «The B-Book: Assigning Programs to Meanings», //Cambridge University Press, 1996

вернуться

12

См. сноску 8

7
{"b":"115212","o":1}