Литмир - Электронная Библиотека
A
A

Самой вызывающей и непостижимой из всех концепций общей теории относительности является мысль о том, что время – это часть пространства[136]. Мы изначально рассматриваем время как бесконечное, абсолютное, неизменное; мы привыкли, что его неуклонный ход ничем не может быть нарушен. На деле же, согласно Эйнштейну, время постоянно меняется. Оно даже имеет форму. По выражению Стивена Хокинга[137], оно «неразрывно взаимосвязано» с тремя измерениями пространства, образуя удивительную структуру, известную как пространство-время.

Что такое пространство-время, обычно объясняют, предлагая представить что-нибудь плоское, но пластичное – скажем, матрац или лист резины, – на котором лежит тяжелый круглый предмет, например железный шар. Под тяжестью шара материал, на котором он лежит, слегка растягивается и прогибается. Это отдаленно напоминает воздействие на пространство-время (материал) массивного объекта, такого как Солнце (металлический шар): оно растягивает, изгибает и искривляет пространство-время. Теперь, если вы покатите по листу шарик поменьше, то, согласно Ньютоновым законам движения, он будет стремиться двигаться по прямой, но, приближаясь к массивному объекту и уклону прогибающегося материала, он катится вниз, неотвратимо влекомый к более массивному предмету. Это гравитация – результат искривления пространства-времени.

Каждый обладающий массой объект оставляет небольшую вмятину в структуре космоса. Так что Вселенная – это, как выразился Деннис Овербай, «бесконечно проминающийся матрац». Гравитация с такой точки зрения не столько самостоятельная сущность, сколько свойство пространства, это «не “сила”, а побочный продукт искривления пространства-времени», пишет физик Митио Каку[138] и продолжает: «В некотором смысле гравитации не существует; что движет планетами и звездами, так это искривление пространства и времени».

Разумеется, аналогия с проминающимся матрацем верна только в известных пределах, потому что не включает эффекты, связанные со временем. Но в данном случае наш мозг способен лишь на нее, ибо практически невозможно представить структуру, состоящую на три четверти из пространства и на одну четверть из времени, причем все в нем переплетено, как нити шотландского пледа. Во всяком случае, я думаю, можно согласиться, что это была потрясающая по масштабу идея для молодого человека, глазевшего из окна патентного бюро в столице Швейцарии.

* * *

Среди многого другого общая теория относительности Эйнштейна говорила о том, что Вселенная должна либо расширяться, либо сжиматься. Но Эйнштейн не был космологом и разделял общепринятое мнение о том, что Вселенная вечна и неизменна. Во многом для того, чтобы отразить это представление, он ввел в свои уравнения элемент, получивший название космологической постоянной, которая играла роль произвольно выбираемого противовеса действию гравитации, своего рода математической кнопки «пауза». Авторы книг по истории науки всегда прощают Эйнштейну этот ляпсус, но, по существу, это было громадным научным промахом. Он это знал и называл «самой большой ошибкой в своей жизни»[139].

Так уж совпало, что приблизительно в то же время, когда Эйнштейн добавлял к своей теории космологическую постоянную, в Лоуэлловской обсерватории в Аризоне один астроном по имени Весто Слайфер (вообще-то он был из Индианы), снимая спектры отдаленных галактик, обнаружил, что они выглядят удаляющимися от нас[140]. Вселенная не была неподвижной. Галактики, которые разглядывал Слайфер, обнаруживали явные признаки доплеровского смещения – тот же механизм стоит за характерным звуком: и-и-иж-жу-у-у, который производят пролетающие мимо нас по треку гоночные машины[141]. Это явление также характерно и для света, и в случае удаляющихся галактик оно известно как красное смещение (потому что удаляющийся от нас источник света выглядит покрасневшим, а приближающийся – голубеет).

Слайфер первым обнаружил этот эффект в излучении галактик и осознал его потенциальное значение для понимания движений в космосе. К сожалению, никто не обратил на это внимания. К Лоуэлловской обсерватории, как вы помните, относились как к немного странному учреждению из-за одержимости Персиваля Лоуэлла марсианскими каналами, хотя в 1910-х она стала во всех отношениях выдающимся астрономическим центром. Слайфер не был в курсе эйнштейновской теории относительности, а мир, в свою очередь, не слышал о Слайфере. Так что его открытие не имело никаких последствий.

Вместо него слава в основном досталась весьма самолюбивому человеку по имени Эдвин Хаббл. Хаббл родился в 1889 году, на десять лет позже Эйнштейна, в маленьком городке в штате Миссури на краю плато Озарк, и рос там же и в пригороде Чикаго Уитоне, штат Иллинойс. Его отец был директором успешной страховой конторы, так что жизнь всегда была обеспеченной, и Эдвин пользовался щедрой материальной поддержкой. Это был физически сильный, одаренный спортсмен, обаятельный, остроумный красавец – по описанию Уильяма Г. Кроппера, он был «пожалуй, слишком красив»; «Адонис», по словам еще одного поклонника. Согласно его собственным рассказам в жизни ему более или менее постоянно удавалось совершать героические поступки – спасать тонущих, выводить перепуганных людей в безопасное место на полях сражений во Франции, приводить в замешательство мировых чемпионов по боксу нокдаунами в показательных матчах. Все это выглядело слишком хорошо, чтобы можно было поверить. Да… При всех своих талантах и способностях Хаббл к тому же был неисправимым лгуном.

Это было более чем странно, ибо жизнь Хаббла с ранних лет была богата настоящими отличиями, порой на удивление обильными. В 1906 году за одни школьные соревнования по легкой атлетике он победил в прыжках с шестом, в толкании ядра, метании диска и молота, прыжках в высоту с места и с разбега и был в составе команды, выигравшей эстафету на одну милю, – словом, семь первых мест за одни соревнования, и вдобавок он был третьим в прыжках в длину. В том же году он установил рекорд штата Иллинойс в прыжках в высоту.

В равной мере он отличался и в учебе и без труда поступил в Чикагский университет, где изучал физику и астрономию (так совпало, что факультет в то время возглавлял Альберт Майкельсон). Здесь он был включен в число первых стипендиатов Родса в Оксфорде. Три года пребывания в Англии явно вскружили ему голову, потому что, вернувшись в 1913 году в Уитон, он стал носить инвернесский плащ с капюшоном, курить трубку и употреблять странно высокопарный язык – не совсем британский, но что-то вроде того, – который сохранил на всю жизнь. Позднее он утверждал, что большую часть двадцатых годов практиковал в качестве адвоката в Кентукки, хотя в действительности работал школьным учителем и баскетбольным тренером в Нью-Олбани, штат Индиана, до того как получил докторскую степень и отслужил короткий срок в армии. (Он прибыл во Францию за месяц до перемирия и почти наверняка не слышал ни одного боевого выстрела.)

В 1919 году, уже в тридцать лет, он переехал в Калифорнию и получил должность в обсерватории Маунт-Уилсон близ Лос-Анджелеса. Быстро и более чем неожиданно он становится самым выдающимся астрономом XX века.

Стоит на минуту прерваться и представить, как мало было известно о космосе в то время. Сегодня астрономы считают, что в видимой Вселенной насчитывается около 140 миллиардов галактик[142]. Это огромное число, намного больше, чем можно себе представить. Если бы галактики были морожеными горошинами, то такого количества было бы достаточно, чтобы заполнить им большой концертный зал, скажем Бостон-гарденс или Королевский Альберт-холл. (Это на самом деле вычислил астрофизик Брюс Грегори.) В 1919 году, когда Хаббл приблизил глаз к окуляру, количество известных галактик составляло ровно одну штуку – Млечный Путь. Все остальное считалось либо частью Млечного Пути, либо одним из множества отдаленных незначительных скоплений газа. Хаббл вскоре продемонстрировал, насколько ошибочным было это убеждение.

вернуться

136

На самом деле объединение пространства и времени появилось уже в специальной теории относительности. Однако искривление пространства-времени, о котором идет речь дальше, действительно вводится только в общей теории относительности.

вернуться

137

Стивен Уильям Хокинг (Stephen William Hawking, р. 1942) – британский физик-теоретик, профессор математики Кембриджского университета. Основные направления исследований – космология и квантовая теория гравитации. В 1974 г. доказал, что черные дыры должны испускать излучение. Книга Хокинга «Краткая история времени», опубликованная в 1988 г., 4,5 года продержалась в списке бестселлеров лондонской газеты Sunday Times и разошлась суммарным тиражом около 10 млн экземпляров (русский перевод: СПб.: Амфора, 2010).

вернуться

138

Митио Каку (Michio Kaku) – американский физик-теоретик японского происхождения, автор ряда монографий и нескольких научно-популярных бестселлеров, в частности «Физика невозможного» (русский перевод: М.: Альпина нон-фикшн, 2009). В 2006 году Каку подготовил на BBC серию программ, посвященных природе времени, он ведет большое научное ток-шоу на радио.

вернуться

139

Введение космологической постоянной в уравнения общей теории относительности было математически совершенно корректным шагом. В последние годы новые астрофизические данные вновь поставили перед учеными вопрос о том, что космологическая постоянная (или нечто наподобие нее) может потребоваться в уравнениях, описывающих эволюцию Вселенной. Так что «величайшая ошибка Эйнштейна» вполне может оказаться одним из его пророчеств. Но нельзя не признать, что из-за веры в статичность Вселенной и введения в уравнения космологической постоянной Эйнштейн не смог на основе собственной теории предсказать расширение Вселенной. Это действительно было очень досадным упущением для Эйнштейна, но его не замедлили восполнить другие космологи, в первую очередь де Ситтер, Леметр и Фридман.

вернуться

140

Свои наблюдения Слайфер произвел на 5 лет раньше – в 1912 г., однако опубликовал результаты только в 1917 г.

вернуться

141

Эффект назван по имени австрийского физика Иоганна Кристиана Доплера, который первым теоретически предсказал этот эффект в 1842 году. Если коротко, происходит следующее: когда движущийся источник приближается к неподвижному объекту, звуковые волны уплотняются, толпясь перед приемником (скажем, вашими ушами). Это подобно тому, как любые предметы, подпираемые сзади, нагромождаются на неподвижный объект. Это нагромождение воспринимается слушающим как более высокий звук (и-и-иж). Когда же источник звука проходит мимо и начинает удаляться, звуковые волны растягиваются и удлиняются и высота звука внезапно падает (жу-у-у).

вернуться

142

См. примеч. 33.

34
{"b":"114821","o":1}