Литмир - Электронная Библиотека
Содержание  
A
A

Учёба Пифагора в Египте способствует тому, что он сделался одним из самых образованных людей своего времени. К этому периоду относится событие, изменившее его дальнейшую жизнь. Скончался фараон Амазис, а его преемник по трону не выплатил ежегодную дань Камбизу, персидскому царю, что послужило достаточным поводом для войны. Персы не пощадили даже священные храмы. Подверглись гонениям и жрецы, их убивали или брали в плен. Так попал в персидский плен и Пифагор.

Согласно старинным легендам, в плену в Вавилоне Пифагор встречался с персидскими магами, приобщился к восточной астрологии и мистике, познакомился с учением халдейских мудрецов. Халдеи познакомили Пифагора со знаниями, накопленными восточными народами в течение многих веков: астрономией и астрологией, медициной и арифметикой. Эти науки у халдеев в значительной степени опирались на представления о магических и сверхъестественных силах, они придали определённое мистическое звучание философии и математике Пифагора…

Двенадцать лет пробыл в вавилонском плену Пифагор, пока его не освободил персидский царь Дарий Гистасп, прослышавший о знаменитом греке. Пифагору уже шестьдесят, он решает вернуться на родину, чтобы приобщить к накопленным знаниям свой народ.

С тех пор как Пифагор покинул Грецию, там произошли большие изменения. Лучшие умы, спасаясь от персидского ига, перебрались в Южную Италию, которую тогда называли Великой Грецией, и основали там города-колонии Сиракузы, Агригент, Кротон. Здесь и задумывает Пифагор создать собственную философскую школу.

Довольно быстро он завоёвывает большую популярность среди жителей. Энтузиазм населения так велик, что даже девушки и женщины нарушали закон, запрещавший им присутствовать на собраниях. Одна из таких нарушительниц, девушка по имени Теано, становится вскоре женой Пифагора.

В это время в Кротоне и других городах Великой Греции растёт общественное неравенство; вошедшая в легенды роскошь сибаритов (жителей города Сибариса) бок о бок соседствует с бедностью, усиливается социальная угнетённость, заметно падает нравственность. Вот в такой обстановке Пифагор выступает с развёрнутой проповедью нравственного совершенствования и познания. Жители Кротона единодушно избирают мудрого старца цензором нравов, своеобразным духовным отцом города. Пифагор умело использует знания, полученные в странствиях по свету. Он объединяет лучшее из разных религий и верований, создаёт свою собственную систему, определяющим тезисом которой стало убеждение в нерасторжимой взаимосвязи всего сущего (природы, человека, космоса) и в равенстве всех людей перед лицом вечности и природы.

В совершенстве владея методами египетских жрецов, Пифагор «очищал души своих слушателей, изгонял пороки из сердца и наполнял умы светлой истиной». В Золотых стихах Пифагор выразил те нравственные правила, строгое исполнение которых приводит души заблудших к совершенству. Вот некоторые из них: не делай никогда того, чего ты не знаешь, но научись всему, что следует знать, и тогда ты будешь вести спокойную жизнь; переноси кротко свой жребий, каков он есть, и не ропщи на него; приучайся жить без роскоши.

Со временем Пифагор прекращает выступления в храмах и на улицах, а учит уже в своём доме. Система обучения была сложной, многолетней. Желающие приобщиться к знанию должны пройти испытательный срок от трёх до пяти лет. Всё это время ученики обязаны хранить молчание и только слушать Учителя, не задавая никаких вопросов. В этот период проверялись их терпение, скромность.

Пифагор учил медицине, принципам политической деятельности, астрономии, математике, музыке, этике и многому другому. Из его школы вышли выдающиеся политические и государственные деятели, историки, математики и астрономы. Это был не только учитель, но и исследователь. Исследователями становились и его ученики. Пифагор развил теорию музыки и акустики, создав знаменитую «пифагорейскую гамму» и проведя основополагающие эксперименты по изучению музыкальных тонов: найденные соотношения он выразил на языке математики. В Школе Пифагора впервые высказана догадка о шарообразности Земли. Мысль о том, что движение небесных тел подчиняется определённым математическим соотношениям, идеи «гармонии мира» и «музыки сфер», впоследствии приведшие к революции в астрономии, впервые появились именно в Школе Пифагора.

Многое сделал учёный и в геометрии. Доказанная Пифагором знаменитая теорема носит его имя. Достаточно глубоко исследовал Пифагор и математические отношения, закладывая тем самым основы теории пропорций. Особенное внимание он уделял числам и их свойствам, стремясь познать смысл и природу вещей. Посредством чисел он пытался даже осмыслить такие вечные категории бытия, как справедливость, смерть, постоянство, мужчина, женщина и прочее.

Пифагорейцы полагали, что все тела состоят из мельчайших частиц — «единиц бытия», которые в различных сочетаниях соответствуют различным геометрическим фигурам. Число для Пифагора было и материей, и формой Вселенной. Из этого представления вытекал и основной тезис пифагорейцев: «Все вещи — суть числа». Но поскольку числа выражали «сущность» всего, то и объяснять явления природы следовало только с их помощью. Пифагор и его последователи своими работами заложили основу очень важной области математики — теории чисел.

Все числа пифагорейцы разделяли на две категории — чётные и нечётные, что характерно и для некоторых других древних цивилизаций.

Позднее выяснилось, что пифагорейские «чётное — нечётное», «правое — левое» имеют глубокие и интересные следствия в кристаллах кварца, в структуре вирусов и ДНК, в знаменитых опытах Пастера с поляризацией винной кислоты, в нарушении чётности элементарных частиц и других теориях.

Не чужда была пифагорейцам и геометрическая интерпретация чисел. Они считали, что точка имеет одно измерение, линия — два, плоскость — три, объём — четыре измерения.

Десятка может быть выражена суммой первых четырёх чисел (1+2+3+4=10), где единица — выражение точки, двойка — линии и одномерного образа, тройка — плоскости и двумерного образа, четвёрка — пирамиды, то есть трёхмерного образа. Ну чем не четырёхмерная Вселенная Эйнштейна?

При суммировании всех плоских геометрических фигур — точки, линии и плоскости — пифагорейцы получали совершенную, божественную шестёрку.

Справедливость и равенство пифагорейцы видели в квадрате числа. Символом постоянства у них было число девять, поскольку все кратные девяти числа имеют сумму цифр опять-таки девять. Число восемь у пифагорейцев символизировало смерть, так как кратные восьми имеют уменьшающуюся сумму цифр.

Пифагорейцы считали чётные числа женскими, а нечётные мужскими. Нечётное число — оплодотворяющее и, если его сочетать с чётным, оно возобладает; кроме того, если разлагать чётное и нечётное надвое, то чётное, как женщина, оставляет в промежутке пустое место, между двумя частями. Поэтому и считают, что одно число свойственно женщине, а другое мужчине. Символ брака у пифагорейцев состоял из суммы мужского, нечётного числа три и женского, чётного числа два. Брак — это пятёрка, равная трём плюс два. По той же причине прямоугольный треугольник со сторонами три, четыре, пять был назван ими «фигура невесты».

Четыре числа, составляющие тетраду — один, два, три, четыре — имеют прямое отношение к музыке: они задают все известные консонантные интервалы — октаву (1:2), квинту (2:3) и кварту (3:4). Иными словами, декада воплощает не только геометрически-пространственную, но и музыкально-гармоническую полноту космоса. Среди свойств десятки отметим ещё и то, что в неё входит равное количество простых и составных чисел, а также столько же чётных, сколько и нечётных.

Сумма чисел, входящих в тетраду, равна десяти, именно поэтому десятка считалась у пифагорейцев идеальным числом и символизировала Вселенную. Поскольку число десять — идеальное, рассуждали они, на небе должно быть ровно десять планет. Надо заметить, что тогда были известны лишь Солнце, Земля и пять планет.

Знаменитая тетрада, состоящая из четырёх чисел, повлияла через пифагорейцев на Платона, который придавал особое значение четырём материальным элементам: земле, воздуху, огню и воде. Пифагорейцы знали также совершенные и дружественные числа. Совершенным называлось число, равное сумме своих делителей. Дружественные — числа, каждое из которых — сумма собственных делителей другого числа. В древности числа такого рода символизировали дружбу, отсюда и название.

2
{"b":"110384","o":1}