В Древней Руси получила распространение сходная с греко-византийской система числовых знаков, основанная на славянском алфавите (см. Славянские цифры ). Славянская нумерация в русской математической литературе встречается до начала 18 века, но уже с конца 16 века эту нумерацию всё более вытесняет принятая ныне десятичная позиционная система.
Наиболее древнее известное нам математическое произведение относится к 1136 и принадлежит новгородскому монаху Кирику. Оно посвящено арифметико-хронологическим расчётам, которые показывают, что в то время на Руси умели решать сложную задачу вычисления пасхалий (определения на каждый год дня наступления праздника пасхи), сводящуюся в своей математической части к решению в целых числах неопределённых уравнений первой степени. Арифметические рукописи конца 16—17 веков содержат, помимо описания славянской и арабской нумерации, арифметические операции с целыми положительными числами, а также подробное изложение правил действия с дробями, тройное правило и решение уравнений первой степени с одним неизвестным посредством правила ложного положения. Для целей практического использования общих правил в рукописях рассматривалось много примеров реального содержания, и излагался так называемый дощаный счет — прототип русских счётов . Подобным же образом была построена и первая арифметическая часть знаменитой «Арифметики» Л. Ф. Магницкого (1703). В геометрических рукописях, в большинстве своём преследовавших также практические цели, содержалось изложение правил определения площадей фигур и объёмов тел, часто приближённых, использовались свойства подобных треугольников и теорема Пифагора.
3. Период создания математики переменных величин.
С 17 века начинается существенно новый период развития математики. «Поворотным пунктом в математике была Декартова переменная величина. Благодаря этому в математику вошли движение и тем самым диалектика и благодаря этому же стало немедленно необходимым дифференциальное и интегральное исчисление...» (Энгельс Ф., см. Маркс К. и Энгельс Ф., Сочинения, 2 изд., т. 20, с. 573). Круг количественных отношений и пространственных форм, изучаемых теперь М., уже не исчерпывается числами, величинами и геометрическими фигурами. В основном это было обусловлено явным введением в М. идей движения и изменения (см. Переменные и постоянные величины ). Уже в алгебре в скрытом виде содержится идея зависимости между величинами (значение суммы зависит от значений слагаемых и т. д.). Однако чтобы охватить количественные отношения в процессе их изменения, надо было самые зависимости между величинами сделать самостоятельным предметом изучения. Поэтому на первый план выдвигается понятие функции , играющее в дальнейшем такую же роль основного и самостоятельного предмета изучения, как ранее понятия величины или числа. Изучение переменных величин и функциональных зависимостей приводит далее к основным понятиям математического анализа, вводящим в М. в явном виде идею бесконечного, к понятиям предела , производной , дифференциала и интеграла . Создаётся анализ бесконечно малых, в первую очередь в виде дифференциального исчисления и интегрального исчисления , позволяющий связывать конечные изменения переменных величин с их поведением в непосредственной близости отдельных принимаемых ими значений. Основные законы механики и физики записываются в форме дифференциальных уравнений , и задача интегрирования этих уравнений выдвигается в качестве одной из важнейших задач М. Разыскание неизвестных функций, определённых другого рода условиями, составляет предмет вариационного исчисления . Таким образом, наряду с уравнениями, в которых неизвестными являются числа, появляются уравнения, в которых неизвестны и подлежат определению функции.
Предмет изучения геометрии также существенно расширяется с проникновением в геометрию идей движения и преобразования фигур. Геометрия начинает изучать движение и преобразования сами по себе. Например, в проективной геометрии одним из основных объектов изучения являются сами проективные преобразования плоскости или пространства. Впрочем, сознательное развитие этих идей относится лишь к концу 18 века и началу 19 века. Гораздо раньше, с созданием в 17 веке аналитической геометрии , принципиально изменилось отношение геометрии к остальной М.: был найден универсальный способ перевода вопросов геометрии на язык алгебры и анализа и решения их чисто алгебраическими и аналитическими методами, а с другой стороны, открылась широкая возможность изображения (иллюстрирования) алгебраических и аналитических фактов геометрически, например при графическом изображении функциональных зависимостей (см. Координаты ).
Алгебра 17 и 18 веков в значительной мере посвящена следствиям, вытекающим из возможности изучать левую часть уравнения Р(х) = 0 как функцию переменного х . Этот подход к делу позволил изучить вопрос о числе действительных корней, дать методы их отделения и приближённого вычисления, в комплексной же области привёл французского математика Ж. Д’Аламбера к не вполне строгому, но для математиков 18 века достаточно убедительному доказательству «основной теоремы алгебры» о существовании у любого алгебраического уравнения хотя бы одного корня. Достижения «чистой» алгебры, не нуждающейся в заимствованных из анализа понятиях о непрерывном изменении величин, в 17—18 веках были тоже значительны (достаточно указать здесь на решение произвольных систем линейных уравнений при помощи определителей, разработку теории делимости многочленов, исключения неизвестных и т. д.), однако сознательное отделение собственно алгебраических фактов и методов от фактов и методов математического анализа типично лишь для более позднего времени (2-я половина 19 века — 20 век). В 17—18 веках алгебра в значительной мере воспринималась как первая глава анализа, в которой вместо исследования произвольных зависимостей между величинами и решения произвольных уравнений ограничиваются зависимостями и уравнениями алгебраическими.
Создание новой М. переменных величин в 17 веке было делом учёных передовых стран Западной Европы, в первую очередь И. Ньютона и Г. Лейбница . В 18 веке одним из основных центров научных математических исследований становится также Петербургская академия наук, где работал ряд крупнейших математиков того времени иностранного происхождения (Л. Эйлер, Д. Бернулли) и постепенно складывается русская математическая школа, блестяще развернувшая свои исследования с начала 19 века.
17 век. Охарактеризованный выше новый этап развития М. органически связан с созданием в 17 веке математического естествознания, имеющего целью объяснение течения отдельных природных явлений действием общих, математически сформулированных законов природы. На протяжении 17 века действительно глубокие и обширные математические исследования относятся лишь к двум областям естественных наук — к механике [Г. Галилей открывает законы падения тел (1632, 1638), И. Кеплер — законы движения планет (1609, 1619), И. Ньютон — закон всемирного тяготения (1687)] и к оптике [Г. Галилей (1609) и И. Кеплер (1611) сооружают зрительные трубы, И. Ньютон развивает оптику на основе теории истечения, Х. Гюйгенс и Р. Гук — на основе волновой теории]. Тем не менее рационалистическая философия 17 века выдвигает идею универсальности математического метода (Р. Декарт , Б. Спиноза , Г. Лейбниц), придающую особенную яркость устремлениям этой, по преимуществу философской, эпохи в развитии М.
Серьёзные новые математические проблемы выдвигают перед М. в 17 веке навигация (необходимость усовершенствования часового дела и создания точных хронометров), а также картография, баллистика, гидравлика. Авторы 17 века понимают и любят подчёркивать большое практическое значение М. Опираясь на свою тесную связь с естествознанием, М. 17 века смогла подняться на новый этап развития. Новые понятия, не укладывающиеся в старые формально-логические категории М., получали своё оправдание в соответствии реальным соотношениям действительного мира. Так, например, реальность понятия производной вытекала из реальности понятия скорости в механике; поэтому вопрос заключался не в том, можно ли логически оправдать это понятие, а лишь в том, как это сделать.