Литмир - Электронная Библиотека
Содержание  
A
A

В конце прошлого века русский физик Н. А. Умов высказал мысль, что близость направления магнитной и географической осей Земли не случайна и следует подозревать некую связь между вращением земного шара и его намагниченностью. Взгляды Умова развил П. Н. Лебедев — знаменитый Лебедев, первым измеривший давление света. Он предположил, что центробежная сила, вызванная вращением Земли, смещает электроны внутри атомов и это-то смещение и является источником магнитного поля. Недавно советский ученый Е. В. Ступоченко попытался подтвердить гипотезу Лебедева экспериментально. Исследуя смещения электрических зарядов в вращающихся телах, он произвел расчеты, которые показали, что существующая намагниченность Земли могла бы возникнуть при смещении заряда внутри каждого атома только на одну сотую диаметра атома. Расчет, однако, не подтвердился, когда его применили к Солнцу и звездам.

Итак, подозревается вращение Земли. Но вращается и Луна — почему же у нее нет своего магнитного поля? Выходит, что вовсе не обязательно любое вращающееся космическое тело должно быть намагничено?

В 1945 году советский ученый Я. И. Френкель выдвинул гипотезу: в ядре Земли — вязкой металлической жидкости — возникают вихревые токи, они-то и есть источник земного магнетизма. Ныне школа английского геофизика Э. Булларда, основываясь на новейших сейсмологических материалах, уточнила: Земля имеет твердое ядро, окруженное вращающимся огненно-жидким слоем металла, в котором и возникают дрейфующие вихревые токи.

Гипотеза Булларда — Френкеля имеет свои недостатки: оставляет открытым вопрос о первоначальном источнике возбуждения, не объясняет сравнительно быстрых изменений составляющих магнитного поля. Так или иначе, постоянное магнитное поле принято объяснять вихревыми электрическими токами, генерирующимися в проводящем ядре Земли.

Что до переменного магнитного поля, то его источник находится за пределами Земли: это электрические токи в верхнем слое атмосферы ионосфере. Изменчивость ионосферы — этой пограничной области, за которой чернеет открытый космос, — и вызывает, по-видимому, магнитные вариации. Плавные, периодические вариации в повседневной жизни заметны разве что специалистам-геофизикам и корабельным штурманам, которые должны, ведя прокладку, непременно учитывать магнитное склонение, то есть угол между географическим и магнитным меридианами для данной точки. Неопределенные вариации знакомы каждому, кто слышал, как вдруг начинает хрипеть на коротких волнах радиоприемник, или наблюдал, как внезапно прерывается проволочная связь. Это — магнитные бури. Их вызывают колебания солнечной активности — появление пятен, выброс факелов. Может быть, существуют и другие причины космического порядка. Во время магнитных бурь ярко разгораются полярные сияния. В зоне сияний токи достигают 270 тысяч ампер, в то время как общие токи над землей имеют силу порядка 40 тысяч ампер.

Изменчивость магнитного поля вызывает необходимость постоянных измерений его элементов. И возникают сложные картины. Взгляните при случае на карту магнитных склонений для любого года, и вы увидите, как причудливо изгибаются изогоны — линии, соединяющие на карте мира точки с одинаковой величиной склонения.

Склонения меняются с широтой и временем года, они зависят также от одиннадцатилетних циклов солнечной активности. Наибольших величин склонение достигает в районе магнитных полюсов. Ему бы полагалось равномерно уменьшаться к экватору. Почему же, в таком случае, в экваториальной зоне Атлантического океана западное склонение ныне составляет целых 22°?

Какие-то силы систематически искажают геомагнитное поле. Только ли ионосферные токи? Только ли солнечная активность? Нет. Есть еще одна сила — Мировой океан. Колоссальная масса легкоподвижной и к тому же электропроводной жидкости…

Давно обнаружили электрические токи, блуждающие в твердой оболочке Земли, — так называемые теллурические токи. Но лишь сравнительно недавно открыли, что токи есть и в океане.

В 1935 году техник рыбной промышленности А. Т. Миронов ставил в Баренцевом море опыты по электрическому лову сельди: он читал, что речную рыбу кое-где глушат, опуская в воду электроды и пропуская между ними ток. Однако морская рыба не всплывала на поверхность подобно своим речным соплеменницам и даже не делала попыток уйти из зоны действия тока. Было похоже, что электрический ток для морской рыбы не имеет никакого значения. И вели себя так не какие-нибудь электрические угри, а обыкновенные, ни на что не претендующие селедки.

Скромный техник-рыбник Миронов сделал сразу два открытия. Одно — по своей прямой специальности: морскую рыбу током оглушить нельзя, но можно заманить куда надо. Второе открытие имело серьезнейшее геофизическое значение: в морской воде есть электрический ток, к которому рыба вполне адаптирована.

Миронов поставил ряд опытов, чтобы убедиться в истинности своего вывода. Он погрузил в море два электрода на расстоянии друг от друга, какое позволяла длина судна, но не подвел к ним ток, а подключил чувствительный прибор. Опыты подтвердили: электрический ток в океане есть.

Токи, возникающие в морских течениях, очень незначительны. Тем не менее океан вносит существенный вклад в общую картину земного магнетизма. Океан — не только гигантская машина, преобразующая лучистую энергию в тепловую. Он в значительной степени делает магнитную «погоду» планеты.

Существуют фундаментальные работы академика В. В. Шулейкина о сложной связи и взаимозависимости трех «этажей», формирующих геомагнитное поле: ядра Земли, океана и ионосферы. Очень интересна, в частности, идея о том, что дрейфующие конвекционные вихри Булларда взаимодействуют с океанической частью земной поверхности сильней, чем с сухопутной частью. Существует весьма тонкая взаимосвязь между двумя подвижными оболочками Земли океаном и ионосферой. Сравнительно недавно радиолокация ионосферы дала неожиданный эффект: на одном из ионных слоев как бы отпечатан силуэт Австралии. Вероятно, такой эффект возникает вследствие температурного контраста между ионосферой над материком и ионосферой над океаном: потоки воздуха в ионосфере, направленные вдоль береговой черты, словно бы оконтуривают Австралийский материк и вызывают иные условия отражения радиоволн по сравнению с чисто океанскими и чисто материковыми.

Установлена связь между магнитным склонением — иначе говоря, широтной составляющей напряженности геомагнитного поля — и очертаниями океанов. Магнитное склонение возрастает при подходе к океану. Береговая черта не просто отделяет сушу от воды — невидимкою она поднимается ввысь и, сложно взаимодействуя с ионосферой, искажает магнитное поле Земли.

Было ли оно, поле, другим, упорядоченным, в древнейшие времена, когда всю Землю покрывал первичный океан? И не очертания ли поднявшихся впоследствии материков вкупе с океанскими электрическими токами отклонили магнитную ось от оси вращения, создали магнитные аномалии, прихотливо выгнули на карте мира изогоны? Очень трудный вопрос.

Ясно одно: если бы планету и сейчас полностью покрывал океан, то даже при вполне упорядоченном геомагнитном поле мы с вами, читатель, были бы дельфинами, а эта книга была бы отпечатана кровью осьминога на разглаженной акульей коже.

Около восьми Рустам поднял голову от карты и сказал:

— Между прочим, сегодня на хоккейных меридианах интересная встреча.

Среди общественности, представленной Уром и Нонной, эта весть не вызвала ответного душевного движения.

— Наши играют с финнами, — одиноко прозвучал голос Рустама.

— А хоть бы и с дельфинами, — сказала Нонна. — Двадцать пятой западной долготы, глубина пятьсот — тридцать четыре и четыре. Отметил? Теперь глубина — тысяча…

— Поговорить не с кем! — проворчал Рустам, отмечая на карте указанную точку. — Где Валерку носит, хотел бы я знать!

В восемь он подступил к телевизору, стянул с него покрывало и решительным щелчком как бы утвердил свое право на личную жизнь. Закурив, он кинулся в кресло. Профессионально-бодрый голос комментатора начал перечислять составы команд.

88
{"b":"103041","o":1}