Литмир - Электронная Библиотека
Литмир - Электронная Библиотека > Bismut Jean-Michel (EN) > Hypoelliptic Laplacian and Orbital Integrals (AM-177)
Hypoelliptic Laplacian and Orbital Integrals (AM-177)
Добавить похожую книгу
Engendering Rome
Автор: Keith A. M. (EN)
Похожа
Непохожа
Scrum Shortcuts without Cutting Corners
Похожа
Непохожа
Key to Irunium
Похожа
Непохожа
No Turning Back
Похожа
Непохожа
Hypoelliptic Laplacian and Orbital Integrals (AM-177)
Author:Bismut Jean-Michel (EN)
A introductory fragment is available
Language of a book: Английский
Publisher: Gardners Books

    This book uses the hypoelliptic Laplacian to evaluate semisimple orbital integrals in a formalism that unifies index theory and the trace formula. The hypoelliptic Laplacian is a family of operators that is supposed to interpolate between the ordinary Laplacian and the geodesic flow. It is essentially the weighted sum of a harmonic oscillator along the fiber of the tangent bundle, and of the generator of the geodesic flow. In this book, semisimple orbital integrals associated with the heat kernel of the Casimir operator are shown to be invariant under a suitable hypoelliptic deformation, which is constructed using the Dirac operator of Kostant. Their explicit evaluation is obtained by localization on geodesics in the symmetric space, in a formula closely related to the Atiyah-Bott fixed point formulas. Orbital integrals associated with the wave kernel are also computed. Estimates on the hypoelliptic heat kernel play a key role in the proofs, and are obtained by combining analytic, geometric, and probabilistic techniques. Analytic techniques emphasize the wavelike aspects of the hypoelliptic heat kernel, while geometrical considerations are needed to obtain proper control of the hypoelliptic heat kernel, especially in the localization process near the geodesics. Probabilistic techniques are especially relevant, because underlying the hypoelliptic deformation is a deformation of dynamical systems on the symmetric space, which interpolates between Brownian motion and the geodesic flow. The Malliavin calculus is used at critical stages of the proof.

    Поделиться:
    ]]>Facebook :0]]>  ]]>Twitter :0]]>  ]]>В контакте :0]]>  ]]>Livejournal :0]]>  ]]>Мой мир :0]]>  ]]>Gmail :0]]>  Email :0  ]]>Скачать :0]]>  
    Мой статус книги:
    Чтобы оставить свою оценку и комментарий вам нужно зайти на сайт или зарегистрироваться

    {"b":"522580","o":30}