Литмир - Электронная Библиотека
Bayesian Disease Mapping
Добавить похожую книгу
Proclamation and Celebration
Похожа
Непохожа
Горький апельсин
Оценка   5 (1)
Читать
Похожа
Непохожа
Once and Always Murder
Автор: Haddam Jane (EN)
Похожа
Непохожа
Only the Third Heaven?
Автор: Gooder Paula (EN)
Похожа
Непохожа
Healthcare Investing, Chapter 10
Похожа
Непохожа
Cancer's Best Medicine
Автор: Emeka Mauris (EN)
Похожа
Непохожа
Taste of Paradise (Mills & Boon Cherish)
Похожа
Непохожа
Iconoclast
Автор: Berns Gregory (EN)
Похожа
Непохожа
Top Hedge Fund Investors
Похожа
Непохожа
Bayesian Disease Mapping
Author:Lawson Andrew B. (EN)
A introductory fragment is available
Language of a book: Английский
Publisher: Gardners Books

    Since the publication of the first edition, many new Bayesian tools and methods have been developed for space-time data analysis, the predictive modeling of health outcomes, and other spatial biostatistical areas. Exploring these new developments, Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology, Second Edition provides an up-to-date, cohesive account of the full range of Bayesian disease mapping methods and applications. A biostatistics professor and WHO advisor, the author illustrates the use of Bayesian hierarchical modeling in the geographical analysis of disease through a range of real-world datasets.New to the Second EditionThree new chapters on regression and ecological analysis, putative hazard modeling, and disease map surveillanceExpanded material on case event modeling and spatiotemporal analysisNew and updated examplesTwo new appendices featuring examples of integrated nested Laplace approximation (INLA) and conditional autoregressive (CAR) modelsIn addition to these new topics, the book covers more conventional areas such as relative risk estimation, clustering, spatial survival analysis, and longitudinal analysis. After an introduction to Bayesian inference, computation, and model assessment, the text focuses on important themes, including disease map reconstruction, cluster detection, regression and ecological analysis, putative hazard modeling, analysis of multiple scales and multiple diseases, spatial survival and longitudinal studies, spatiotemporal methods, and map surveillance. It shows how Bayesian disease mapping can yield significant insights into georeferenced health data. WinBUGS and R are used throughout for data manipulation and simulation.

    Поделиться:
    ]]>Facebook :0]]>  ]]>Twitter :0]]>  ]]>В контакте :0]]>  ]]>Livejournal :0]]>  ]]>Мой мир :0]]>  ]]>Gmail :0]]>  Email :0  ]]>Скачать :0]]>  
    Мой статус книги:
    Чтобы оставить свою оценку и отзывы вам нужно зайти на сайт или зарегистрироваться

    {"b":"452499","o":30}