Литмир - Электронная Библиотека
Литмир - Электронная Библиотека > AL DEZA MICHEL-MARIE ET (EN) > SCALE-ISOMETRIC POLYTOPAL GRAPHS IN HYPERCUBES AND CUBIC LATTICES
SCALE-ISOMETRIC POLYTOPAL GRAPHS IN HYPERCUBES AND CUBIC LATTICES
Добавить похожую книгу
Два храма
Оценка   9.67 (3)
Читать
Похожа
Непохожа
High-Pressure Physics
Автор: Loveday John (EN)
Похожа
Непохожа
Aire du heron cendre
Похожа
Непохожа
Milton and Maternal Mortality
Похожа
Непохожа
Big Mouth
Похожа
Непохожа
Death On The Ice
Автор: Brown Cassie (EN)
Похожа
Непохожа
Thermal Physics of the Atmosphere
Похожа
Непохожа
SCALE-ISOMETRIC POLYTOPAL GRAPHS IN HYPERCUBES AND CUBIC LATTICES
A introductory fragment is available
Language of a book: Английский
Publisher: Gardners Books

    This monograph identifies polytopes that are “combinatorially ℓ1-embeddable”, within interesting lists of polytopal graphs, i.e. such that corresponding polytopes are either prominent mathematically (regular partitions, root lattices, uniform polytopes and so on), or applicable in chemistry (fullerenes, polycycles, etc.). The embeddability, if any, provides applications to chemical graphs and, in the first case, it gives new combinatorial perspective to “ℓ2-prominent” affine polytopal objects.The lists of polytopal graphs in the book come from broad areas of geometry, crystallography and graph theory. The book concentrates on such concise and, as much as possible, independent definitions. The scale-isometric embeddability — the main unifying question, to which those lists are subjected — is presented with the minimum of technicalities.Contents:Introduction: Graphs and Their Scale-Isometric EmbeddingAn Example: Embedding of FullerenesRegular Tilings and HoneycombsSemi-regular Polyhedra and Relatives of Prisms and AntiprismsTruncation, Capping and Chamfering92 Regular-faced (not Semi-regular) PolyhedraSemi-regular and Regular-faced n-Polytopes, n ≥ 4Polycycles and Other Chemically Relevant GraphsPlane TilingsUniform Partitions of 3-Space and RelativesLattices, Bi-lattices and TilesSmall PolyhedraBifaced PolyhedraSpecial ℓ1-graphsSome Generalization of ℓ1-embeddingReadership: Researchers in combinatorics and graph theory.

    Поделиться:
    ]]>Facebook :5]]>  ]]>Twitter :1]]>  ]]>В контакте :2]]>  ]]>Livejournal :2]]>  ]]>Мой мир :1]]>  ]]>Gmail :1]]>  Email :0  ]]>Скачать :1]]>  
    Мой статус книги:
    Чтобы оставить свою оценку и отзывы вам нужно зайти на сайт или зарегистрироваться

    {"b":"434169","o":30}