Литмир - Электронная Библиотека
Neural Network Learning
Добавить похожую книгу
Neural Networks Beginnings
Автор: Carter Jade
Читать
Похожа
Непохожа
Classical Fields
Автор: Grundhofer T. (EN)
Похожа
Непохожа
Asymptotic Analysis of Random Walks
Похожа
Непохожа
Hope Street, Jerusalem
Автор: Makler Irris (EN)
Похожа
Непохожа
Spatial Information and the Environment
Автор: Halls Peter (EN)
Похожа
Непохожа
Charles Bean
Похожа
Непохожа
Dynamic Internet
Похожа
Непохожа
Neural Network Learning
Author:Anthony Martin (EN)
Language of a book: Английский
Language of an original book: Английский
Publisher: Gardners Books

    This book describes theoretical advances in the study of artificial neural networks. It explores probabilistic models of supervised learning problems, and addresses the key statistical and computational questions. Research on pattern classification with binary-output networks is surveyed, including a discussion of the relevance of the Vapnik-Chervonenkis dimension, and calculating estimates of the dimension for several neural network models. A model of classification by real-output networks is developed, and the usefulness of classification with a 'large margin' is demonstrated. The authors explain the role of scale-sensitive versions of the Vapnik-Chervonenkis dimension in large margin classification, and in real prediction. They also discuss the computational complexity of neural network learning, describing a variety of hardness results, and outlining two efficient constructive learning algorithms. The book is self-contained and is intended to be accessible to researchers and graduate students in computer science, engineering, and mathematics.

    Поделиться:
    ]]>Facebook :0]]>  ]]>Twitter :0]]>  ]]>В контакте :0]]>  ]]>Livejournal :0]]>  ]]>Мой мир :0]]>  ]]>Gmail :0]]>  Email :0  ]]>Скачать :0]]>  
    Мой статус книги:
    Чтобы оставить свою оценку и отзывы вам нужно зайти на сайт или зарегистрироваться

    {"b":"390294","o":30}