The discovery of Bose-Einstein condensation (BEC) in trapped ultracold atomic gases in 1995 has led to an explosion of theoretical and experimental research on the properties of Bose-condensed dilute gases. The first treatment of BEC at finite temperatures, this book presents a thorough account of the theory of two-component dynamics and nonequilibrium behaviour in superfluid Bose gases. It uses a simplified microscopic model to give a clear, explicit account of collective modes in both the collisionless and collision-dominated regions. Major topics such as kinetic equations, local equilibrium and two-fluid hydrodynamics are introduced at an elementary level. Explicit predictions are worked out and linked to experiments. Providing a platform for future experimental and theoretical studies on the finite temperature dynamics of trapped Bose gases, this book is ideal for researchers and graduate students in ultracold atom physics, atomic, molecular and optical physics and condensed matter physics.