Литмир - Электронная Библиотека
Three-Body Problem
Добавить похожую книгу
Guide to Asperger Syndrome
Похожа
Непохожа
Expressions of Agency in Ancient Greek
Похожа
Непохожа
Challenging Behaviour
Автор: Emerson Eric (EN)
Похожа
Непохожа
International Climate Change Regime
Автор: Yamin Farhana (EN)
Похожа
Непохожа
Property Law
Автор: Kohler Paul (EN)
Похожа
Непохожа
Surfing Scientist: 40 DIY Science Gizmos
Автор: Meerman Ruben (EN)
Похожа
Непохожа
Antenna Zoning
Похожа
Непохожа
Ramblers Short Walks in the Lake District
Автор: Maps Collins (EN)
Похожа
Непохожа
Go It Alone
Автор: Burch Geoff (EN)
Похожа
Непохожа
Three-Body Problem
Author:Valtonen Mauri (EN)
Language of a book: Английский
Language of an original book: Английский
Publisher: Gardners Books

    How do three celestial bodies move under their mutual gravitational attraction? This problem has been studied by Isaac Newton and leading mathematicians over the last two centuries. Poincare's conclusion, that the problem represents an example of chaos in nature, opens the new possibility of using a statistical approach. For the first time this book presents these methods in a systematic way, surveying statistical as well as more traditional methods. The book begins by providing an introduction to celestial mechanics, including Lagrangian and Hamiltonian methods, and both the two and restricted three body problems. It then surveys statistical and perturbation methods for the solution of the general three body problem, providing solutions based on combining orbit calculations with semi-analytic methods for the first time. This book should be essential reading for students in this rapidly expanding field and is suitable for students of celestial mechanics at advanced undergraduate and graduate level.

    Поделиться:
    ]]>Facebook :0]]>  ]]>Twitter :0]]>  ]]>В контакте :0]]>  ]]>Livejournal :0]]>  ]]>Мой мир :0]]>  ]]>Gmail :0]]>  Email :0  ]]>Скачать :0]]>  
    Мой статус книги:
    Чтобы оставить свою оценку и отзывы вам нужно зайти на сайт или зарегистрироваться

    {"b":"386502","o":30}