Литмир - Электронная Библиотека
Литмир - Электронная Библиотека > Tuff ry St phane (EN) > Data Mining and Statistics for Decision Making
Data Mining and Statistics for Decision Making
Добавить похожую книгу
European History For Dummies
Автор: Lang Se n (EN)
Похожа
Непохожа
Improving Natural Resource Management
Похожа
Непохожа
VHDL for Logic Synthesis
Похожа
Непохожа
Biological Diversity
Автор: Hatcher Paul (EN)
Похожа
Непохожа
Sex, Stress and Reproductive Success
Похожа
Непохожа
Data Mining and Statistics for Decision Making
Author:Tuff ry St phane (EN)
Language of a book: Английский
Language of an original book: Английский
Publisher: Gardners Books

    Data mining is the process of automatically searching large volumes of data for models and patterns using computational techniques from statistics, machine learning and information theory; it is the ideal tool for such an extraction of knowledge. Data mining is usually associated with a business or an organization's need to identify trends and profiles, allowing, for example, retailers to discover patterns on which to base marketing objectives. This book looks at both classical and recent techniques of data mining, such as clustering, discriminant analysis, logistic regression, generalized linear models, regularized regression, PLS regression, decision trees, neural networks, support vector machines, Vapnik theory, naive Bayesian classifier, ensemble learning and detection of association rules. They are discussed along with illustrative examples throughout the book to explain the theory of these methods, as well as their strengths and limitations. Key Features: Presents a comprehensive introduction to all techniques used in data mining and statistical learning, from classical to latest techniques. Starts from basic principles up to advanced concepts. Includes many step-by-step examples with the main software (R, SAS, IBM SPSS) as well as a thorough discussion and comparison of those software. Gives practical tips for data mining implementation to solve real world problems. Looks at a range of tools and applications, such as association rules, web mining and text mining, with a special focus on credit scoring. Supported by an accompanying website hosting datasets and user analysis. Statisticians and business intelligence analysts, students as well as computer science, biology, marketing and financial risk professionals in both commercial and government organizations across all business and industry sectors will benefit from this book.

    Поделиться:
    ]]>Facebook :0]]>  ]]>Twitter :0]]>  ]]>В контакте :0]]>  ]]>Livejournal :0]]>  ]]>Мой мир :0]]>  ]]>Gmail :0]]>  Email :0  ]]>Скачать :0]]>  
    Мой статус книги:
    Чтобы оставить свою оценку и комментарий вам нужно зайти на сайт или зарегистрироваться

    {"b":"382777","o":30}