Introduction to the Operational Calculus is a translation of "Einfuhrung in die Operatorenrechnung, Second Edition." This book deals with Heaviside's interpretation, on the Laplace integral, and on Jan Mikusinki's fundamental work "Operational Calculus." Throughout the book, basic algebraic concepts appear as aids to understanding some relevant points of the subject. An important field for research in analysis is asymptotic properties. This text also discusses examples to show the potentialities in applying operational calculus that run beyond ordinary differential equations with constant coefficients. In using operational calculus to solve more complicated problems than those of ordinary differential equations with constant coefficients, the concept of convergence assumes a significant role in the field of operators. This book also extends the Laplace transformation and applies it to non-transformable functions. This text also present three methods in which operational calculus can be modified and become useful in solving specific ranges of problems. These methods pertain to the finite Laplace transformation, to partial differential equations, and to the Volterra integral equations and ordinary differential equations with variable coefficients. This book can prove valuable for mathematicians, students, and professor of calculus and advanced mathematics.