Stochastic Tools in Turbulence discusses the available mathematical tools to describe stochastic vector fields to solve problems related to these fields. The book deals with the needs of turbulence in relation to stochastic vector fields, particularly, on three-dimensional aspects, linear problems, and stochastic model building. The text describes probability distributions and densities, including Lebesgue integration, conditional probabilities, conditional expectations, statistical independence, lack of correlation. The book also explains the significance of the moments, the properties of the characteristic function, and the Gaussian distribution from a more physical point of view. In considering fields, one must account for single-valued functions of one or more parameters, or collections of single-valued functions of one or more parameters such as time or space coordinates. The text also discusses multidimensional vector fields of finite energy, the characteristic eddies for a homogenous vector field, as well as, the distribution of solutions of an algebraic equation. Engineers, algebra students, and professors of statistics and advanced mathematics will find the book highly useful.