Литмир - Электронная Библиотека
Литмир - Электронная Библиотека > Beauzamy B. (EN) > Introduction to Operator Theory and Invariant Subspaces
Introduction to Operator Theory and Invariant Subspaces
Добавить похожую книгу
Science of Hysteresis
Похожа
Непохожа
Principles of Electron Optics
Похожа
Непохожа
Principles of Electron Optics
Похожа
Непохожа
Vue 7
Похожа
Непохожа
Mobile WiMAX
Автор: Ahmadi Sassan (EN)
Похожа
Непохожа
Secret Ministry of Ag. & Fish
Автор: Riols Noreen (EN)
Похожа
Непохожа
Linguistic History of English Poetry
Похожа
Непохожа
Sweeping Up Glass
Автор: Wall Carolyn (EN)
Похожа
Непохожа
Death in the Sun
Автор: Creed Adam (EN)
Похожа
Непохожа
Introduction to Operator Theory and Invariant Subspaces
Author:Beauzamy B. (EN)
Language of a book: Английский
Language of an original book: Английский
Publisher: Gardners Books

    This monograph only requires of the reader a basic knowledge of classical analysis: measure theory, analytic functions, Hilbert spaces, functional analysis. The book is self-contained, except for a few technical tools, for which precise references are given.Part I starts with finite-dimensional spaces and general spectral theory. But very soon (Chapter III), new material is presented, leading to new directions for research. Open questions are mentioned here. Part II concerns compactness and its applications, not only spectral theory for compact operators (Invariant Subspaces and Lomonossov's Theorem) but also duality between the space of nuclear operators and the space of all operators on a Hilbert space, a result which is seldom presented. Part III contains Algebra Techniques: Gelfand's Theory, and application to Normal Operators. Here again, directions for research are indicated. Part IV deals with analytic functions, and contains a few new developments. A simplified, operator-oriented, version is presented. Part V presents dilations and extensions: Nagy-Foias dilation theory, and the author's work about C1-contractions. Part VI deals with the Invariant Subspace Problem, with positive results and counter-examples.In general, much new material is presented. On the Invariant Subspace Problem, the level of research is reached, both in the positive and negative directions.

    Поделиться:
    ]]>Facebook :0]]>  ]]>Twitter :0]]>  ]]>В контакте :0]]>  ]]>Livejournal :0]]>  ]]>Мой мир :0]]>  ]]>Gmail :0]]>  Email :0  ]]>Скачать :0]]>  
    Мой статус книги:
    Чтобы оставить свою оценку и отзывы вам нужно зайти на сайт или зарегистрироваться

    {"b":"306628","o":30}